
A Semi-Lagrangian Contouring Method for Fluid Simulation

ADAM W. BARGTEIL, TOLGA G. GOKTEKIN, JAMES F. O’BRIEN, and JOHN A. STRAIN

University of California, Berkeley

In this article, we present a semi-Lagrangian surface tracking method for use with fluid simulations. Our method maintains an

explicit polygonal mesh that defines the surface, and an octree data structure that provides both a spatial index for the mesh

and a means for efficiently approximating the signed distance to the surface. At each timestep, a new surface is constructed by

extracting the zero set of an advected signed-distance function. Semi-Lagrangian backward path tracing is used to advect the

signed-distance function. One of the primary advantages of this formulation is that it enables tracking of surface characteristics,

such as color or texture coordinates, at negligible additional cost. We include several examples demonstrating that the method

can be effectively used as part of a fluid simulation to animate complex and interesting fluid behaviors.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically
based modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation

General Terms: Algorithms

Additional Key Words and Phrases: Natural phenomena, physically based animation, computational fluid dynamics, surface

tracking, level-set methods, semi-Lagrangian contouring

1. INTRODUCTION

The fundamental problem of tracking a surface as it is advected by some velocity field arises frequently
in applications such as surface reconstruction, image segmentation, and fluid simulation. Unfortu-
nately, the naïve approach of simply advecting the vertices of a polygonal mesh, or other explicit repre-
sentation of the surface, quickly encounters problems such as tangling and self-intersection. Instead, a
family of methods, known as level-set methods, has been developed for surface tracking. These methods
represent the surface implicitly as the zero set of a scalar field defined over the problem domain. The
methods are widely used, and the texts by Sethian [1999] and Osher and Fedkiw [2003], and Osher and
Sethian’s [1988] seminal article, provide an excellent introduction to the topic. One of the key issues
that distinguishes various level-set and similar approaches is the representation of the scalar field,
which must capture whatever surface properties are important to a given application.

In this article we present a surface tracking method that explicitly represents the surface as a set of
polygons. However, rather than attempting to advect these polygons forward with the flow, we update
the surface in time with an implicit representation: an advected signed-distance function, ψ , whose

This work was supported in part by California MICRO 04-066 and 05-044, and by generous support from Apple Computer, Alias,

Pixar Animation Studios, Intel Corporation, Sony Computer Entertainment America, and the Alfred P. Sloan Foundation. Adam

Bargteil was supported by a Siebel Scholarship.

Author’s address: Computer Science Department, University of California, Berkeley, 537 Soda Hall, Berkeley, CA 94720; email:

{adamb,goktekin,job}@cs.berkeley.edu, strain@math.berkeley.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first

page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists,

or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested

from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

c© 2006 ACM 0730-0301/06/0100-0019 $5.00

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006, Pages 19–38.

20 • A. W. Bargteil et al.

zero set defines the surface. A new polygonal surface is generated by contouring or extracting the zero
set of ψ . The value of ψ at a point x, at current time t, is obtained by first tracing backward through
the flow field to find the previous location x′ at time t − �t, and then returning the signed distance
of x′ from the previous surface. Using adaptive octree data structures, we can efficiently and reliably
construct the new surface and corresponding signed-distance function.

The theoretical framework for this method comes from a series of articles by Strain [1999b, 1999c,
1999a, 2000, 2001] that described and analyzed a method for contour tracking in two dimensions. While
the semi-Lagrangian procedure for backward advection does not change significantly when going from
two- to three-dimensional problems, significant surface tracking issues arise when moving to three
dimensions. This article discusses these issues, as well as the general method, and demonstrates how
semi-Lagrangian surface contouring can be useful for animating the complex and interesting behavior
of fluids.

One of the primary advantages of this method is that it enables tracking surface characteristics, such
as color or texture coordinates. These properties can be easily stored directly on the polygonal mesh
and efficiently mapped onto the new surface during semi-Lagrangian advection. The explicit surface
representation also facilitates other common operations, such as rendering, while reconstruction from a
scalar function allows operations that rely on an implicit representation. Finally, the method produces
detailed, well-defined surfaces that are suitable for realistic animation and that do not jitter or exhibit
other undesirable behaviors.

2. BACKGROUND

Our method pulls together solutions to a number of well-studied problems to arrive at a method for
tracking surfaces. In this section we will first discuss other surface tracking methods and then discuss
related work and the mathematical foundation for several of the individual components of our method.

2.1 Previous Surface Tracking Methods

Because surface tracking arises in a variety of contexts, the topic has received a significant amount
of attention. Even in the limited context of fluid animation, there has been a great deal of excellent
work on simulating fluids with free surfaces, including Foster and Metaxas [1996], Foster and Fedkiw
[2001], Enright et al. [2002b], Carlson et al. [2002, 2004], Losasso et al. [2004], Goktekin et al. [2004],
Hong and Kim [2005], Wang et al. [2005], Guendelman et al. [2005], and Zhu and Bridson [2005].
The methods available for tracking free surfaces of liquids can be roughly sorted into four categories:
level-set methods, particle-based methods, particle level-set methods, and semi-Lagrangian contouring.

2.1.1 Level-Set Methods. Many of the most successful solutions to the surface tracking problem are
based on level-set methods, which were originally introduced by Osher and Sethian [1988]. A complete
review of level-set methods is beyond the scope of this article, and we recommend the excellent surveys
by Sethian [1999] and Osher and Fedkiw [2003]. Level-set methods represent a surface as the zero
set of a scalar function which is updated over time by solving a partial differential equation, known
as the level-set equation. This equation relates change of the scalar function to an underlying velocity
field. By using this implicit representation, level-set methods avoid dealing with complex topological
changes. However, the scalar function is defined and maintained in the embedding three-dimensional
space, rather than just on the two-dimensional surface. In practice, scalar function values need only be
accurately maintained very near the surface, resulting in a cost that is roughly linear in the complexity
of the surface. One difficulty with level-set methods is that they generally require very high-order
conservation-law solvers, though fast semi-Lagrangian methods have been shown to work in some
cases [Strain 1999b; Enright et al. 2005]. The most significant drawback to using level-set methods

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 21

to track liquid surfaces is their tendency to lose volume in underresolved, high-curvature regions. See
Enright et al. [2002a] for an excellent discussion of the reasons for this volume loss.

Bærentzen and Christensen [2002] built a sculpting system using a level-set surface representation
which could be manipulated by a user with a variety of sculpting tools. Like us, they used adaptive grid
structures to store the scalar field. However, they used a two-level structure rather than a full octree.
They also used semi-Lagrangian methods to update their level-set function. However, when evaluating
the distance function after the semi-Lagrangian path tracing, they interpolated distance values stored
on a regular grid, while our explicit surface representation allows us to compute exact distances near
the surface.

Sussman and Puckett [2000] coupled volume-of-fluid and level-set methods to model droplet dynamics
in ink-jet devices. Volume-of-fluid [Hirt and Nichols 1981] techniques represent the surface by storing,
in each voxel, a volume fraction—the proportion of the voxel filled with liquid. Any cell whose fraction is
not one or zero contains surface. Unfortunately, this representation does not admit accurate curvature
estimates, which are essential to surface tension computations. However, accurate curvature estimates
are easily computed from level-set representations. Thus, the authors combined volume-of-fluid and
level-set representations to model surface tension in ink droplets. Some volume-of-fluid methods build
an explicit surface representation from the volume fractions stored in each voxel. The key difference
between our method and volume-of-fluid methods is that we never compute volume fractions. Instead,
our explicit representation is generated by contouring an advected signed-distance function.

2.1.2 Particle-Based Methods. A number of researchers [Terzopoulos et al. 1989; Desbrun and
Gascuel 1995; Foster and Metaxas 1996; Desbrun and Cani 1996; Cani and Desbrun 1997; Stora et al.
1999; Müller et al. 2003, 2004; Premože et al. 2003; Zhu and Bridson 2005; Pauly et al. 2005] have used
particles to track surfaces. In many of these methods, the simulation elements are particles, which are
already being tracked throughout the volume of the deforming liquid or solid. The surface can then be
implicitly defined as the boundary between where the particles are and where they aren’t. The particles
can be visualized directly, or can be used to define an implicit representation using blobbies or moving
least-squares methods. Premože et al. [2003] went a step further and used particle positions and ve-
locities to guide a level-set solution. Mueller et al. [2004] and Pauly et al. [2005] used special particles,
called surfels, to represent the surface. Surfels store a surface normal as well as position and there are
generally many more surfels than simulation particles. The principal drawback of these methods is
that generating high-quality time-coherent surfaces can be difficult: directly visualizing the particles is
insufficient for high-quality animations, methods which convert the particles to some other represen-
tation on a per-frame basis often lack temporal coherence, and methods which must run sequentially
through the frames or run during the simulation are often quite costly. Additional difficulties arise
when trying to ensure a good sampling of the surface.

2.1.3 Particle Level-Set Methods. To address the volume loss of level-set methods, Enright and his
colleagues [2002a, 2002b, 2005] built on the work of Foster and Fedkiw [2001] to develop particle
level-set methods. These methods track the characteristics of the fluid flow with Lagrangian particles,
which are then used to fix the level-set solution, essentially increasing the effective resolution of the
method. Recently, these methods have been extended to work with octrees [Enright et al. 2005; Losasso
et al. 2004], allowing for very high-resolution surface tracking. These methods represent the current
state of the art on tracking liquid surfaces for animation, but do have some drawbacks. In particular,
the published particle correction rules choose a single particle to provide the signed-distance value.
Since there is no guarantee that the same particle will be chosen at subsequent timesteps, the method
is extremely susceptible to high-frequency temporally incoherent perturbations of the surface. The
artifacts are most noticeable when the surface thins out below the grid resolution and particles happen

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

22 • A. W. Bargteil et al.

to be near some of the sample points, but not others. Also, the method has a large number of parameters
and rules, such as the number of particles per cell and the reseeding strategy, which need to be decided,
often in an application-specific way. Finally, the method tends to produce very smooth surfaces with
very little detail, which is desirable in some, but not all, applications. Despite these drawbacks, the
particle level-set methods have been very successful and represent a significant step forward in the
area of surface tracking for liquid simulations.

2.1.4 Semi-Lagrangian Contouring. Recently, Strain [1999b, 1999c, 1999a, 2000, 2001] has written
a series of articles building a theoretical framework culminating in the formulation of surface tracking
as a contouring problem. He demonstrated his semi-Lagrangian contouring method on a variety of
two-dimensional examples. Our method is based on the method presented by Strain [2001], but with
variations and extensions to deal with problems that arise in three-dimensional computer animation.
While our method bears a number of similarities to level-set methods and takes advantage of many
techniques developed for those methods, we are not directly solving the level-set equation. By formu-
lating surface tracking as a contouring problem, we avoid many of the issues that complicate level-set
methods. In particular, we do not have the same volume loss issues which prompted the particle level-
set methods: while we do not explicitly conserve volume, our semi-Lagrangian path tracing tends to
conserve volume in the same way as the Lagrangian particles in the particle level-set method.

2.2 Implicit Representations

The octree structure we use to build and index the polygonal mesh is quite similar to adaptively sampled
distance fields [Frisken et al. 2000]. These structures adaptively sample distance fields according to
local detail and store samples in a spatial hierarchy. The key difference between adaptively sampled
distance fields and our surface representation is that we store a polygon mesh in addition to distance
samples. This polygon mesh is used for exact evaluation of the distance function near the surface.
Additionally, our splitting criterion is different from that presented by Frisken et al. [2000].

An alternative structure for storing narrow-band level-set functions is the dynamic tubular grid of
Nielsen and Museth [2006]. This structure can be combined with run-length encoding schemes [Houston
et al. 2006], providing extremely compact, high-resolution representations of level-set functions. While
the asymptotic times for their structure match ours, they are able to exploit cache coherence to provide
extremely fast run times for most level-set operations. Integrating the methods presented here with
this data structure is a promising area for future work.

2.3 Contouring

As our title suggests, we formulate surface tracking as a contouring problem. The contouring problem
has been well studied in computer graphics and a number of approaches have been suggested. The
oldest and most widely used is marching cubes, which was first presented by Wyvill et al. [1986], and
later named and popularized by Lorensen and Cline [1987]. Marching cubes suffers from a tendency
to create ill-shaped triangles. This problem is fixed to some degree by dual contouring [Ju et al. 2002],
which also provides adaptive contouring and an elegant means of preserving sharp boundaries. Dual
contouring depends on normal estimates at edge crossings and is very sensitive to inaccuracies in these
normal estimates. Unfortunately, in our method we do not have accurate normal information until af-
ter the contouring step, when we have the triangle mesh. More recently, Boissonnat and Oudot [2003]
presented a contouring technique which uses Delaunay triangulation methods to generate provably
good triangulations. However, this method appears to be prohibitively expensive for something which
must run at every timestep. Yet another alternative is marching triangles [Hilton et al. 1996], which
takes a surface-based rather than volume-based approach to contouring. Marching triangles requires

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 23

significantly less computation time and fewer triangles, and produces higher-quality triangles than
marching cubes. Unfortunately, marching triangles is not guaranteed to produce closed, manifold
meshes in the presence of sharp or thin features.

2.4 Semi-Lagrangian Methods

Semi-Lagrangian methods have been widely used in computer graphics since they were introduced by
Stam [1999] to solve the nonlinear advection term of the Navier-Stokes equations. These methods pro-
vide the foundation for our surface tracking method. Consequently, we briefly discuss the mathematical
foundation of semi-Lagrangian methods. Our discussion follows that of Strain [1999b].

Consider the simplest linear hyperbolic PDE

φt + v(x, t) · ∇φ = 0, (1)

where φ is a scalar field and v(x, t) is a velocity function. Equation (1) passively advects φ through the
velocity field v. Semi-Lagrangian methods are based on the observation that Equation (1) propagates
φ values along characteristic curves x = s(t) defined by

ṡ(t) = v(s(t), t), s(0) = x0. (2)

Thus we can find φ values at any time t by finding the characteristic curve passing through (x, t),
following it backward to some previous point (x0, t0) where the value of φ is known, and setting φ(x, t) =
φ(x0, t0). This observation forms the basis of the backward characteristic or CIR scheme developed by
Courant, Isaacson, and Rees [1952], which is the simplest semi-Lagrangian scheme. Given φ at time
tn, CIR approximates φ(x, tn+1) at any point x at time tn+1 = tn + �t by evaluating the previous speed
v(x, tn), approximating the backward characteristic through x by a straight line

s(t) ≈ x − (tn+1 − t)v(x, tn), (3)

and interpolating φ at time tn to the point

s(tn) ≈ x − (�t)v(x, tn). (4)

Then φ(x, tn+1) is set equal to the interpolated value, φ(s(tn), tn).
For linear PDEs, such as Equation (1), the Lax-Richtmyer equivalence theorem [LeVeque 1990]

guarantees that CIR will converge to the exact solution as �t, �x → 0 if it is stable and consistent.
The stability properties of the CIR scheme are excellent. Each new value φ(x, tn+1) is a single interpo-

lated value of φ at time tn, so unconditional stability is guaranteed in any norm where the interpolation
does not increase norms. For example, CIR with linear interpolation is unconditionally stable in the
2-norm. In general, semi-Lagrangian schemes satisfy the CFL condition by shifting the stencil, rather
than restricting the timestep. Thus information propagates over long distances in one timestep.

Consistency (loosely speaking, the local accuracy of the method), however, is conditional. The global
error of CIR is

O
(

(�x)2

�t

)
+ O(�t), (5)

due to the O((�x)2) error in linear interpolation accumulated over O(1/(�t)) timesteps, plus the O(�t)
error due to freezing F and approximating the characteristics by straight lines. Thus CIR is consistent
to O(�t) if a condition �t ≥ O(�x) is satisfied, contrary to the usual hyperbolic condition �t ≤ C�x.
This condition is extremely convenient, because �t = O(�x) balances time and space resolution in this
first-order accurate scheme.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

24 • A. W. Bargteil et al.

Fig. 1. An overview of our method. At each timestep we begin with an explicit surface representation, from which we can build

a signed-distance function (a) and a velocity field given by the fluid simulator (b). We then define a field function, the zero set of

which will be our new surface. To get the value of the field function at the green point (c), we trace backward through the flow

field to find the yellow point (b), which is the image of the green point at the previous timestep. We then evaluate the signed

distance of the yellow point to the previous surface (a). We can evaluate this field function at every point in the domain and

extract the zero set (c).

For nonlinear PDEs, CIR still converges when the solution is smooth. But nonsmooth shock solutions
of conservation laws move at the wrong speed because CIR is not in conservative form. Since level-set
solutions have no shocks, CIR is a natural scheme for moving interfaces.

3. METHOD OVERVIEW

The surface tracking problem can be phrased as: given a surface representation and a velocity field at
time t, build a representation of the surface at time t +�t. We begin with a triangle mesh and an octree
annotated with signed-distance field samples. We could try to advect the mesh points through the flow
field, but would quickly encounter significant topological difficulties. Instead, we avoid topological issues
by updating the surface using an implicit representation. The implicit representation is then used to
construct a new mesh at the current timestep. More specifically, we define a scalar-valued function
which relates the surface at the current timestep to the surface at the previous timestep. Next, we
extract the zero set of this function using a contouring algorithm. Finally, a new signed-distance field
is computed through a process known as redistancing (see Figure 1).

4. EXPLICIT REPRESENTATION

One of the key differences between our method and other surface tracking methods is that we build
an explicit representation of the surface at every timestep. This explicit representation is a closed,
manifold triangle mesh, which is stored as an array of vertices and an array of triangles. The vertices are
shared between triangles, allowing for easy computation of smooth vertex normals and other common
mesh operations. The distance tree (see Section 6) provides a spatial index for the mesh. The explicit
representation provides our method with several advantages. First, it allows us to compute exact signed-
distance values near the mesh. Second, it allows us to store properties on mesh vertices, rather than at
points near the mesh. Finally, it allows us to take advantage of the many tools and algorithms which
have been developed in computer graphics for manipulating and rendering triangle meshes.

5. IMPLICIT REPRESENTATION

To avoid the topological difficulties of directly updating an explicit surface representation, we update
the surface in time through an implicit representation (see Figure 2). We define a scalar-valued field
function, ψ(x), which relates the surface at the current timestep to the surface at the previous timestep.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 25

Fig. 2. An example of how our implicit representation accommodates merging surfaces. The red grid points trace back through

the velocity field to points inside the surface. The green grid points trace back to points outside the surface. When the contouring

algorithm runs, it will look for zero crossings only between positive and negative (green and red) grid points and create a surface

that does not pass between two grid points of the same color. Thus, without even explicitly determining that a topological change

has occurred, the method handles the change.

The surface at the current timestep will be the zero set of this function,

Sn = {x : ψ(x) = 0}. (6)

For a point x at the current timestep, the function, ψ , first uses backward path tracing, a semi-
Lagrangian integration technique, to find the point x′ at the previous timestep which flows to x. It
then returns the distance from x′ to the surface, Sn−1, at the previous timestep. If we denote the back-
ward path tracing as b(x) : R3 → R3 and let φn(x) be the signed distance from x to the surface Sn,

ψn(x) = φn−1(b(x)) = φn−1(x′). (7)

Essentially, we are advecting the signed-distance function through the velocity field given by the fluid
simulator. In solving this advection term, our method differs from the simple CIR scheme discussed
earlier in two ways. First, instead of the simple linear backward path tracing, we use a second-order
Runge-Kutta scheme (also known as the midpoint method with an Euler predictor)

xn−1/2 = x (tn−1/2) = xn − �t
2

v(xn, tn), (8)

xn−1 = x (tn−1) = xn − (�t)v(xn−1/2, tn), (9)

where v(x, t) is the velocity function. It is important to note that, while this method traces back through
the velocity field with second-order accuracy, the velocity field is frozen over the course of the timestep,
leading to first-order accuracy in time. The second difference is that, when evaluating φ at points near
the surface, we do not interpolate values stored on a grid. Instead, we compute exact distance values.
These changes only improve the accuracy (consistency) of our method and do not affect the unconditional
stability.

To compute the exact distance from a point x′, we compute the distances di to all the nearby triangles.
The distance to the surface is mini di. Schneider and Eberly [2002] detailed a method for computing
the distance from a point to a triangle. This operation is relatively expensive, but many triangles can
be pruned, especially when x′ is very close to the surface, by using standard bounding-box techniques
and our octree data structure (see Section 6).

Signing the distance values turns out to be somewhat difficult near sharp corners. Let y and n(y)
denote the closest point on the surface to x′ and its normal, respectively. When y lies strictly inside a

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

26 • A. W. Bargteil et al.

Fig. 3. The figure shows a part of the surface passing through a grid cell. The cell’s vertices have been annotated with signed-

distance values. Linear interpolation of these values incorrectly chooses the red point as the zero crossing along the bottom edge.

The green point is the actual zero crossing, which will be found with our exact evaluation.

triangle then the sign can be easily computed as

s = (x′ − y) · n(y), (10)

where n(y) is the normal of the triangle containing y. However, if the nearest point in the mesh lies
on more than one triangle (i.e., on an edge or vertex of the mesh), the triangles do not always agree on
the sign. These situations can be resolved by computing an angle-weighted pseudonormal for each edge
and vertex of the mesh and using these pseudonormals to determine the sign when the nearest point
is on an edge or vertex of the mesh. Bærentzen and Aanæs [2002] provided a proof that this procedure
results in accurate signing (in exact arithmetic).

The ability to compute exact distances is one of the chief advantages of having an explicit surface
representation. Interpolation can produce substantial errors (see Figure 3) which are compounded
over time. In fact, this interpolation error is one of the most significant drawbacks to semi-Lagrangian
methods in general. When used for velocity advection, interpolation produces such significant smoothing
that researchers have proposed a number of methods to add detail back to the flow [Fedkiw et al. 2001]
or avoid semi-Lagrangian advection altogether [Zhu and Bridson 2005]. In this work, we are able to
leverage the advantages of semi-Lagrangian advection, without incurring the interpolation error that
would otherwise undesireably smooth surface detail.

6. THE DISTANCE TREE

Our implementation makes heavy use of a structure we call the distance tree. The distance tree is
a balanced octree subdivision of the spatial domain. The octree vertices are annotated with signed-
distance values and each cell of the octree contains a list of the triangles with which it intersects. The
distance tree serves three purposes:

(1) It provides a fast spatial index for the mesh so that nearby triangles can be found quickly.

(2) It provides a fast, approximate signed-distance function, which is sufficient when evaluating the
signed distance far from the surface.

(3) It guides the contouring algorithm, quickly identifying cells which have vertices of different sign
and, thus, contain triangles.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 27

Fig. 4. A two-dimensional distance tree. Distance samples are stored at the octree vertices and triangle lists are stored in cells

which intersect the surface. This distance tree could be generated using our implementation of Criterion (13), which considers ψ

only at cell centers.

6.1 Approximating the Signed-Distance Function

When computing the signed distance from a point x′ to a surface, S, we first find the smallest octree
cell, C, containing x′. If C is at the finest level of the octree, then x′ may be near the surface and all the
triangles in the up to 27 cells in the concentric triple1 of C are considered when computing the minimum
distance to the surface. By storing the nearest distance seen so far and using standard bounding-box
techniques, many of these triangles can be pruned before computing distances, especially when x′ is very
near the surface. If the computed distance is less than C’s edge length, then the distance is guaranteed
to be exact. Otherwise, the computed distance is a very good estimate but may be slightly larger than
the actual distance. Contrariwise, if C is not at the finest level of the octree or if there are no triangles
in the concentric triple of C, then x′ is not near the surface and we do not require an exact distance.
An approximation with the correct sign is sufficient. In this case, we use trilinear interpolation of the
distance values stored at the vertices of C.

6.2 General Splitting Criterion

We make use of two different methods for building distance trees in this work. Most often, we wish to
build a distance tree to resolve the zero set of our field function ψ . However, it is also useful to build a
distance tree from an existing triangle mesh. Our octrees are always built in a top-down manner where
each cell is split based on some variation of the following splitting criterion:

Split any cell whose edge length exceeds its minimum distance to the surface. (11)

Splitting ends when the tree reaches a predetermined maximum depth. Criterion (11) results in a
three-color octree, as described by Samet [1990], where each cell of the octree has one of three types:
interior, exterior, and boundary (see Figure 4).

1If cell C = {x : ‖x − c‖∞ ≤ r} has center c and edge length 2r then its concentric triple T is given by T = {x : ‖x − c‖∞ ≤ 3r}.
ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

28 • A. W. Bargteil et al.

In general, Criterion (11) builds octrees with several useful properties:

—Adjacent cells differ in size by no more than a factor of 2, producing a smooth mesh and simplifying
procedures such as neighbor finding and triangulation of the vertices.

—A cell’s size is proportional to its distance to the surface.

—If φ is the signed distance to the surface at vertices and we extend φ into each cell by trilinear
interpolation, then, because cells vary in size, φ will be discontinuous. However, the jumps in φ

decrease in size in cells near the surface because of the triangle inequality. Thus the interpolated φ

is nearly continuous near the surface.

—Cells coarsen very rapidly away from the surface: if there are N childless cells touching the sur-
face, then the entire tree contains only O(N log N) cells. Hence the surface is resolved accurately at
minimal cost.

6.3 Building a Distance Tree to Resolve ψ

When building a new octree at the beginning of each timestep, we are essentially trying to resolve our
approximation

ψn+1(x) = φn(x − (�t)v(xn−1/2, tn)) (12)

to the signed-distance function φn+1(x). The octree is built recursively from the root cell C0 by the
following splitting criterion:

Split every cell where |ψn+1| is larger than the edge length. (13)

Thus we apply Criterion (13) as if ψn+1 were a distance function. Redistancing every timestep keeps

ψn+1 = φn + (�t)v · ∇φn + O(�t) = φn + O(�t) (14)

within O(�t) of the signed-distance function φn. Thus in the limit, �t = O(�x) → 0, Criterion (13)
reduces to (11), yielding the properties noted above. In practice, we use the value of φ at the cell’s
center to determine whether we should split the cell. To deal with the fact that ψn+1 is not a distance
function and that the value at the cell’s center may not be the minimum over the cell, we multi-
ply the edge length by some constant before doing the comparison. We have found that 1/3 works
well in practice—always dividing near the surface, without spuriously dividing too many cells. No-
tice that we can vary this constant to achieve high-resolution bands of varying width around the
surface.

6.4 Building a Distance Tree from a Triangle Mesh

When building an octree from a triangle mesh (either in initialization, or after some geometric operation
has been applied to the triangle mesh) we use the following splitting criterion:

Split every cell whose concentric triple intersects the surface. (15)

This test is efficiently implemented using Green and Hatch’s [1995] cube/triangle intersection test.
Notice that we need not check every cell in the concentric triple of C individually, but can just increase
the size of C. In practice we have found it sufficient to increase the cell size by a factor of 2, rather than
3, but such trees may not satisfy all the properties listed above.

7. CONTOURING

Once we have resolved ψ on our distance tree, we need to create an explicit representation of our surface
at the new timestep. Creating this explicit representation amounts to extracting the zero set of ψ and

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 29

is an instance of the contouring problem, which has been well studied in computer graphics. For its
simplicity, robustness, and speed, we choose to use a marching-cubes method in our implementation.
Our implementation is based on Bloomenthal’s [1994]. Our cubes are the leaf cells in the distance
tree which have vertices of differing sign. We divide each cube into six tetrahedra to simplify the
implementation. Additionally, when finding the zero crossing along any edge (which will eventually
be a vertex in the triangle mesh), we use a secant method to speed up convergence and evaluate
our full composite field function, including exact evaluation of the previous signed-distance function.
Consequently, the vertices of our polygon mesh are guaranteed to lie on the implicit surface (within an ε

tolerance). In fact, each vertex in our polygon mesh can be mapped to some point on some triangle in the
mesh at the previous timestep. We take advantage of this fact when advecting surface properties. The
marching-cubes algorithm works well for our purposes because each triangle generated by marching
cubes sits strictly inside a single cell of the distance tree, making the distance tree an especially effective
spatial index. Furthermore, we use the distance tree we have already built to guide the marching cubes,
avoiding the need to build a second structure to determine the topology of the new mesh. Near the
surface, our distance tree is refined to the maximum level and looks like a uniform grid. Consequently,
we need not worry about patching the marching-cubes solution.

Our choice of contouring algorithm does result in some limitations. In addition to creating poorly
shaped triangles, marching cubes is nonadaptive. That is, the sampling is as dense in flat regions
as in regions of high curvature. Unfortunately, the nonadaptive nature of marching cubes limits the
resolution we can achieve in high-curvature areas, but is necessary to ensure compatibility. To address
this lack of resolution in high-curvature areas, Strain [2001] split line segments whose centers were
far from the surface, yielding arbitrarily high accuracy. Unfortunately, this splitting technique is not
easily extended to three dimensions as splitting a triangle either creates an incompatible triangulation
or produces even more poorly shaped triangles. It is also very difficult to guarantee that we will still
have a manifold when the inserted vertices are moved to the surface. Alternatively, several adaptive
contouring methods [Shu et al. 1995; Shekhar et al. 1996; Poston et al. 1998] seek to use adaptive
grids and regain compatibility through various crack-patching techniques. Such methods could easily
be used here and we plan to explore adaptive methods in future work.

Although we did not find it necessary, after the contouring step the mesh can be processed in any
way that preserves the closed-manifold invariant. This optional processing might include smoothing
the surface, improving the shape of the triangles, or any other operation that returns a closed manifold.
A new distance tree can then be built from this modified mesh using Criterion (15). A new distance
must be built only if the mesh is modified.

By taking advantage of the details of our method, we can very efficiently achieve limited smoothing
in two ways. First, we can define a second composite function to be the combination of path tracing
backward in time followed by the evaluation of a high-order polynomial interpolant of the distances
at the vertices of the octree. This function is quite similar to the functions used in semi-Lagrangian
level-set methods [Strain 1999b; Enright et al. 2005]. When marching cubes encounters an edge whose
vertices have different signs, we find a point which evaluates to zero for each composite function. The
final mesh vertex is an average of these two points. By constraining the mesh vertex to be on the edge
of the marching-cubes grid, we still guarantee a consistent, closed, manifold triangulation. While this
smoothing technique may be quite useful in some applications, we did not use this method for any of the
results in this article. Second, repeatedly using the same grid for contouring can produce grid artifacts.
For example, a sphere of fluid falling under gravity will develop creases along the coordinate axes.
Such artifacts are a form of aliasing and can be reduced by jittering the grid each timestep. Most of the
examples in this article used grids which were slightly larger than the simulation domain. These grids
were then randomly perturbed so that grids at adjacent timesteps were slightly offset from one another.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

30 • A. W. Bargteil et al.

This jittering limits the reusability of our octrees, but since we build new octrees every timestep, this
limitation is not significant.

8. REDISTANCING

After the triangle mesh at the current timestep has been extracted, we must assign true distance
values to the vertices of our octree. This problem, referred to as redistancing, has been well studied
by the level-set community and a number of methods have been suggested. Strain [1999a] suggested
redistancing by performing an exact evaluation at every vertex of the octree. This method is relatively
efficient since the tree coarsens rapidly away from the surface and works well in two dimensions.
However, in three dimensions, we have found it to be prohibitively expensive and unnecessary. Instead,
we perform exact evaluation at all vertices of the cells that contain triangles, but then run a fast
marching method [Sethian 1996; Losasso et al. 2004] over the remaining vertices. In our method, there
may be some parts of the domain where the octree was refined but did not result in any triangles, such
as when the surface becomes thinner than the resolution of the tree. Consequently, our octree, unlike
those used by Losasso et al. [2004], does not necessarily coarsen away from the surface. To address this
problem, we coarsen parts of the tree which have been refined but did not generate surface. We do this
coarsening in two steps. First, we propagate the triangle lists up the tree so that the triangle list of a
cell is the union of the triangle lists of a cell’s descendants. Second, we remove all the children of any
cell whose concentric triple does not contain any triangles.

Our redistancing method comprises three steps:

—coarsen the octree;

—compute exact distances at vertices of cells which contain triangles;

—run a fast marching method over the remaining vertices.

9. TRACKING SURFACE PROPERTIES

One of the primary advantages of our method is the ability to track surface properties, such as color,
texture coordinates, or even simulation variables, accurately at negligible additional cost. As pointed
out earlier, every vertex in a polygon mesh corresponds to some point on some triangle in the previous
mesh. Thus, semi-Lagrangian advection provides a mapping between surfaces at adjacent timesteps.
If vertex v in the current mesh maps to point p in the old mesh and some surface property was stored
at p, this property can be copied to v. In this way we can track surface properties on the actual surface
as we build the surface, so we do not incur any significant additional cost. Previous methods, such as
the one proposed by Rassmussen et al. [2004], have been limited to tracking properties in the volume
near the surface and interpolating them to the surface. Such methods incur significant cost, introduce
substantial smoothing, and blur properties between nearby surfaces.

In many applications there is no value actually stored at p. Instead, the properties are stored at the
vertices of the triangle containing p. In these cases the problem is slightly more involved. In many cases
it is sufficient to use barycentric interpolation to compute a value at pand copy this interpolated value
to v. However, for some applications this interpolation can produce unwanted smoothing. A simple al-
ternative is to set the value at pto the value stored at the vertex nearest p. Unfortunately, this approach
may introduce unwanted aliasing. Essentially, we are having trouble because we are resampling the
surface at every timestep. However, if we know something about the property we are tracking, we may
be able to “clean up” the blurred signal. For example, in our examples with checkerboard textures, we
tracked reference coordinates which were passed to a simple function to determine color. Since we know
that the tracked value should always be a point on the initial surface we could find the point on the

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 31

Fig. 5. These images shows an invisible tank being filled as multicolored balls of fluid fall into it. The resulting surface contains

complex geometric details which retain the different colors of the balls. The left image was rendered with a matte shader, while

the right image was rendered with a colored glass shader.

Fig. 6. Two balls of viscoelastic fluid are thrown at each other and merge.

initial mesh which was closest to the value the tracking method supplied. In this way, we ensured that,
at every timestep, every vertex in the mesh mapped back to some point on the initial surface. Once we
had this mapping we could copy any property stored on the initial surface, whether it be the reference
coordinates, texture coordinates, or color values. Thus, if image textures were preferred over procedural
textures, texture coordinates could be copied instead of reference coordinates.

There are still plenty of open problems in the area of texturing liquid surfaces. In particular, it is
difficult to deal with large discontinuities in surface properties, which occur when two surfaces merge,
or a surface splits. Creating detail where a surface stretches is also an open problem.

10. RESULTS AND DISCUSSION

We have tested this surface tracking method coupled with a fluid simulation on several examples such
as the ones shown in Figures 5 and 6. We also tested it in the spiraling analytical test field from Enright
et al. [2002a]. Figure 7 shows two objects being advected in this divergence-free velocity field to a mid-
point after which the field reverses. The sphere was restored to a nearly identical shape (see Figure 8),
while the bunny exhibited a small amount of smoothing. The surface of the bunny was textured by
a spot-generating reaction-diffusion system that ran on the surface as the object was being advected

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

32 • A. W. Bargteil et al.

Fig. 7. This figure shows the behavior generated when two different surfaces are passed through an analytical flow field that

stretches and distorts them. The first three images show the object flowing along the field, the last three show the behavior

when the distorted object then flows back along the reverse field. The bunny is textured using a reaction-diffusion system that

is running on the surface during the sequence.

Fig. 8. This figure shows the error in the final frame of the sphere example in Figure 7. The color maps to the error as a

percentage of the sphere’s radius, with blue points slightly inside and yellow points slightly outside.

Fig. 9. In this figure we show the result generated when we continue to distort and stretch an object past the point where it

thins out and tears.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 33

Fig. 10. This sequence shows a thick viscoelastic fluid sliding off of a shelf. A checkerboard texture is mapped onto the surface.

It is interesting to notice that the corners of the checkerboard texture stay sharp, despite the significant deformation.

[Turk 1991; Witkin and Kass 1991]. At each timestep, the morphogens were advected along with the
surface and then allowed to react. In Figure 9 we show the result of running the sphere through
the flow field for several revolutions to highlight the behavior generated when the surface thins below
the resolution of the octree’s finest level.

All of our fluid examples used a standard regular-grid Eulerian fluid simulator with the elasticity
model of Goktekin et al. [2004]. The fluid simulator and the surface tracking module were only very
loosely coupled: the fluid simulator provided the surface tracker with a velocity function and, in turn, the
surface tracker provided the simulator with the signed-distance function. Because our fluid simulator
has a regular grid its resolution is notably coarser than the surface tracker, which uses an octree.
The idea of using different resolutions for the fluid and surface is not new; Foster and Fedkiw [2001]
used different timesteps for their fluid and surface calculations and Goktekin et al. [2004] found that
increasing the spatial resolution of the surface tracking grid dramatically reduced volume loss. As noted
by Losasso et al. [2004], using different spatial resolutions can produce artifacts. For example, pieces
of surface could appear connected when the simulator thinks they are disconnected and vice versa.
Additionally, surface features may be maintained when a more detailed fluid simulator would smooth
them away. In general, we found the increased surface resolution to be worth these artifacts. Ideally we
would use a multiresolution fluid simulation, like the octree method of Losasso et al. [2004]. We plan
to incorporate a multiresolution fluid simulator as part of our future work.

For most of our examples the surface tracking module took roughly 1 min/timestep at an effective
resolution of 5123. The fluid simulation also required about 1 min/timestep. Both the fluid simulator
and the surface tracking module took 11 timesteps per frame. Thus it took about 2 days to simulate 10 s
of animation, with roughly half the time spent solving for the velocity field and half the time updating
the surface. It is important to note that, given a perfect semi-Lagrangian path tracer, the method could
take arbitrarily large timesteps. Decoupling the timesteps of the fluid simulator and surface tracker,
so that the surface tracker runs only once per frame, is an interesting area of future work.

In Figure 10 we show the behavior when a thick viscoelastic fluid is allowed to flow off a shelf into
a basin. This surface is textured by advecting reference coordinates along with the flow and applying
a procedural checkerboard texture. Figure 11 shows beginning and ending frames using both an off-
the-shelf procedural shader, which includes a displacement map, and a reaction-diffusion system. The
motion of the spots on the surface occurs both from the motion of the surface and from the reaction-
diffusion system seeking equilibrium on the moving surface.

Figures 12 and 13 show two streams of liquid that are being sprayed toward each other. As the
streams oscillate from side-to-side, they collide and produce a thin, web-like surface between them.
The motion of the two streams causes this thin surface to form a spiral shape as the streams separate.
Similar effects can be seen in real-world footage.

All of our images were rendered with the open-source renderer Pixie [Arikan 2005]. Since we gen-
erated a polygonal mesh for each frame, we could take advantage of standard rendering techniques,

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

34 • A. W. Bargteil et al.

Fig. 11. This figure shows the beginning and ending frames of an animation similar to that shown in Figure 10. The left images

were rendered with an off-the-shelf procedural texture which includes a displacement map, while the images on the right were

generated with a reaction-diffusion texture.

Fig. 12. These images show closeups of the fluid web created between two intersecting sprays. The left image is rendered

realistically, the right is rendered with a matte shader where the color has been advected with the flow.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 35

Fig. 13. This sequence shows a realistic rendering of two liquid sprays. As the sprays move from side to side, they periodically

intersect and create a web-like spiral pattern.

allowing for very fast rendering times; most of our renderings took less than 3 min/frame. Many of our
examples were rendered with a matte shader so that the surface detail can be seen. A number of our
examples were also rendered with a glass shader (using water’s index of refraction) for comparison to
previous methods and real fluids, and to demonstrate how the method can be used to generate realistic
results. Our colored and textured examples illustrate how easily a variety of properties may be attached
to the surface. In practice, we believe that advected properties could be used effectively with standard
shading techniques to generate a wide range of interesting effects.

11. CONCLUSIONS

Semi-Lagrangian contouring offers an elegant and effective means for surface tracking and has a
number of advantages over competing methods. First, we have an explicit representation. In addition
to enabling exact evaluation, this explicit representation also allows us to leverage 30 years of computer
graphics technology which has been optimized for polygonal meshes. Rendering, texture mapping, and
a variety of other applications are all very straightforward. Second, we have an implicit representation.
This implicit representation allows us to update the surface without explicitly addressing any of the
difficult topological issues which plague other approaches. Third, semi-Lagrangian advection gives us
a mapping between surfaces at adjacent timesteps. This mapping allows us to accurately track surface
properties on the actual surface at negligible complexity and cost. Fourth, our method does not have any
ad hoc rules or parameters to tune. In fact, the only parameters to our system are the upper and lower
corners of the domain, the maximum depth of the octree (a resolution parameter), and some resolution
tolerances. Finally, and most importantly, we are able to produce detailed, flicker-free animations of
complex fluid motions.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

36 • A. W. Bargteil et al.

ACKNOWLEDGMENTS

We thank the other members of the Berkeley Graphics Group for their helpful criticism and comments.
In particular, we thank Ravi Kolluri, Okan Arikan, and Bryan Feldman for many fruitful discussions.
We also thank the anonymous reviewers for their many helpful comments and suggestions.

REFERENCES

ARIKAN, O. 2005. Pixie: Photorealistic renderer. Go online to http:// www.cs.utexas.edu/∼okan/Pixie/pixie.htm.

BÆRENTZEN, J. A. AND AANÆS, H. 2002. Computing discrete signed distance fields from triangle meshes. Tech. rep. Informatics

and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

BÆRENTZEN, J. A. AND CHRISTENSEN, N. J. 2002. Interactive modelling of shapes using the level-set method. Int. J. Shape
Model. 8, 2, 79–97.

BLOOMENTHAL, J. 1994. An implicit surface polygonizer. In Graphics Gems IV. Academic Press Professional, Inc., San Diego,

CA, 324–349.

BOISSONNAT, J. D. AND OUDOT, S. 2003. Provably good surface sampling and approximation. In SGP ’03: Proceedings of the
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Eurographics Association, Aire-la-Ville, Switzerland,

9–18.

CANI, M.-P. AND DESBRUN, M. 1997. Animation of deformable models using implicit surfaces. IEEE Trans. Visual. Comput.
Graph. 3, 1 (Jan.), 39–50.

CARLSON, M., MUCHA, P. J., R. BROOKS VAN HORN, I., AND TURK, G. 2002. Melting and flowing. In SCA ’02: Proceedings of the
2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM Press, New York, NY, 167–174.

CARLSON, M., MUCHA, P. J., AND TURK, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans.
Graph. 23, 3, 377–384.

COURANT, R., ISAACSON, E., AND REES, M. 1952. On the solution of nonlinear hyperbolic differential equations by finite differences.

Comm. Pure Appl. Math 5, 243–249.

DESBRUN, M. AND CANI, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings
of Computer Animation and Simulation 1996. 61–76.

DESBRUN, M. AND GASCUEL, M.-P. 1995. Animating soft substances with implicit surfaces. In the Proceedings of SIGGRAPH
95, 287–290.

ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I. 2002a. A hybrid particle level set method for improved interface capturing.

J. Computat. Phys. 183, 1, 83–116.

ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Comput.
Struct. 83, 479–490.

ENRIGHT, D. P., MARSCHNER, S. R., AND FEDKIW, R. P. 2002b. Animation and rendering of complex water surfaces. In Proceedings
of ACM SIGGRAPH 2002. 736–744.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simulation of smoke. In the Proceedings of ACM SIGGRAPH 2001. 15–22.

FOSTER, N. AND FEDKIW, R. 2001. Practical animation of liquids. In the Proceedings of ACM SIGGRAPH 2001. 23–30.

FOSTER, N. AND METAXAS, D. 1996. Realistic animation of liquids. In Proceedings of Graphics Interface 1996. 204–212.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. 2000. Adaptively sampled distance fields: A general representation

of shape for computer graphics. In SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques. ACM Press, New York, NY/Addison-Wesley Publishing Co., Reading, MA, 249–254.

GOKTEKIN, T. G., BARGTEIL, A. W., AND O’BRIEN, J. F. 2004. A method for animating viscoelastic fluids. In Proceedings of ACM
SIGGRAPH 2004. 463–468.

GREEN, D. AND HATCH, D. 1995. Fast polygon-cube intersection testing. In Graphics Gems V. Academic Press Professional, Inc.,

San Diego, CA, 375–379.

GUENDELMAN, E., SELLE, A., LOSASSO, F., AND FEDKIW, R. 2005. Coupling water and smoke to thin deformable and rigid shells.

ACM Trans. Graph. 24, 3, 973–981.

HILTON, A., STODDART, A. J., ILLINGWORTH, J., AND WINDEATT, T. 1996. Marching triangles: Range image fusion for complex object

modelling. In Proceedings of the International Conference on Image Processing. 381–384.

HIRT, C. W. AND NICHOLS, B. D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Computat. Phys. 39,

201–225.

HONG, J.-M. AND KIM, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915–920.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

Semi-Lagrangian Contouring Method for Fluid Simulation • 37

HOUSTON, B., NIELSEN, M. B., BATTY, C., NILSSON, O., AND MUSETH, K. 2006. Hierarchical RLE level set: A compact and versatile

deformable surface representation. ACM Trans. Graph. 25, 1, xx–xx.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual contouring of hermite data. In SIGGRAPH ’02: Proceedings of the
29th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 339–346.

LEVEQUE, R. J. 1990. Numerical Methods for Conservation Laws. Birkhauser-Verlag, Basel, Switzerland.

LORENSEN, W. E. AND CLINE, H. E. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH
’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY,

163–169.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating water and smoke with an octree data structure. In Proceedings of ACM
SIGGRAPH 2004. 457–462.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-based fluid simulation for interactive applications. In ACM SIGGRAPH
2003 Symposium on Computer Animation. 154–159.

MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS, M., AND ALEXA, M. 2004. Point based animation of elastic, plastic and

melting objects. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation.

NIELSEN, M. B. AND MUSETH, K. 2006. Dynamic Tubular Grid: An efficient data structure and algorithms for high resolution

level sets. J. Sci. Comput. 26, 1, 1–39.

OSHER, S. AND FEDKIW, R. 2003. The Level Set Method and Dynamic Implicit Surfaces. Springer-Verlag, New York, NY.

OSHER, S. AND SETHIAN, J. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi

formulations. J Computat. Phys. 79, 12–49.

PAULY, M., KEISER, R., ADAMS, B., DUTRÉ;, P., GROSS, M., AND GUIBAS, L. J. 2005. Meshless animation of fracturing solids. ACM
Trans. Graph. 24, 3, 957–964.

POSTON, T., WONG, T.-T., AND HENG, P.-A. 1998. Multiresolution isosurface extraction with adaptive skeleton climbing. Comput.
Graph. For. 17, 3 (Sept.), 137–148.

PREMOŽE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND WHITAKER, R. 2003. Particle-based simulation of fluids. Comput. Graph.
For. 22, 3 (Sept.), 401–410.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D., MARINO, S., SUMNER, N., GEIGER, W., HOON, S., AND FEDKIW, R. 2004. Directable photore-

alistic liquids. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation. ACM Press,

New York, NY, 193–202.

SAMET, H. 1990. The Design and Analysis of Spatial Data Structures. Addison-Wesley Longman Publishing Co., Inc., Reading,

MA.

SCHNEIDER, P. J. AND EBERLY, D. H. 2002. Geometric Tools for Computer Graphics, 1st ed. Morgan Kaufmann, San Francisco,

CA.

SETHIAN, J. A. 1996. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. USA 93, 4

(Feb.), 1591–1595.

SETHIAN, J. A. 1999. Level Set Methods and Fast Marching Methods, 2nd ed. Cambridge Monograph on Applied and Compu-

tational Mathematics. Cambridge University Press, Cambridge, U.K.

SHEKHAR, R., FAYYAD, E., YAGEL, R., AND CORNHILL, J. F. 1996. Octree-based decimation of marching cubes surfaces. In VIS ’96:
Proceedings of the 7th conference on Visualization ’96. IEEE Computer Society Press, Los Alamitos, CA, 335ff.

SHU, R., CHEN, Z., AND KANKANHALLI, M. S. 1995. Adaptive marching cubes. Vis. Comput. 11, 202–217.

STAM, J. 1999. Stable fluids. In the Proceedings of ACM SIGGRAPH 99. 121–128.

STORA, D., AGLIATI, P.-O., CANI, M.-P., NEYRET, F., AND GASCUEL, J.-D. 1999. Animating lava flows. In Proceedings of Graphics
Interface 99. 203–210.

STRAIN, J. A. 1999a. Fast tree-based redistancing for level set computations. J. Computat. Phys. 152, 2 (July), 648–666.

STRAIN, J. A. 1999b. Semi-Lagrangian methods for level set equations. J. Computat. Phys. 151, 2 (May), 498–533.

STRAIN, J. A. 1999c. Tree methods for moving interfaces. J. Computat. Phys. 151, 2 (May), 616–648.

STRAIN, J. A. 2000. A fast modular semi-Lagrangian method for moving interfaces. J. Computat. Phys. 161, 2 (July), 512–

536.

STRAIN, J. A. 2001. A fast semi-Lagrangian contouring method for moving interfaces. J. Computat. Phys. 169, 1 (May), 1–22.

SUSSMAN, M. AND PUCKETT, E. G. 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric

incompressible two-phase flows. J. Comput. Physat. 162, 2, 301–337.

TERZOPOULOS, D., PLATT, J., AND FLEISCHER, K. 1989. Heating and melting deformable models (from goop to glop). In Proceedings
of Graphics Interface 1989. 219–226.

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

38 • A. W. Bargteil et al.

TURK, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. In SIGGRAPH ’91: Proceedings of the 18th
Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 289–298.

WANG, H., MUCHA, P. J., AND TURK, G. 2005. Water drops on surfaces. ACM Trans. Graph. 24, 3, 921–929.

WITKIN, A. AND KASS, M. 1991. Reaction-diffusion textures. In SIGGRAPH ’91: Proceedings of the 18th Annual Conference on
Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 299–308.

WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data structure for soft objects. Vis. Comput. 2, 4, 227–234.

ZHU, Y. AND BRIDSON, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965–972.

Received September 2005; accepted December 2005

ACM Transactions on Graphics, Vol. 25, No. 1, January 2006.

