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Figure 1: Four frames of a synthesized roar animation for Toothless the dragon

Abstract

In this paper we describe a method for automatically animating interactive characters based on an existing corpus of key-framed
hand-animation. The method learns separate low-dimensional embeddings for subsets of the hand-animation corresponding to
different semantic labels. These embeddings use the Gaussian Process Latent Variable Model to map high-dimensional rig
control parameters to a three-dimensional latent space. By using a particle model to move within one of these latent spaces, the
method can generate novel animations corresponding to the space’s semantic label. Bridges link each pose in one latent space
that is similar to a pose in another space. Animations corresponding to a transitions between semantic labels are generated by
creating animation paths that move though one latent space and traverse a bridge into another. We demonstrate this method by
using it to interactively animate a character as it plays a simple game with the user. The character is from a previously produced
animated film and the data we use for training is the data that was used to animate the character in the film. The animated
motion from the film represents an enormous investment of skillful work. Our method allows this work to be repurposed and
reused for interactively animating the familiar character from the film.

1. Introduction

Feature animation is a labor and time intensive process that results
in characters with compelling and unique personalities. Taking one
of these characters into an interactive application presents a chal-
lenge. The traditional approach is to hand animate large numbers
of motion clips which can then be evaluated in a motion graph.
This becomes expensive due to the large number of possible ac-
tions required. Even a single action can require multiple clips to
avoid obvious visual repetition when idling in a specific pose.

In this paper we repurpose the original hand animated content
from a film by using it as a training set which is then used to gen-
erate new animation in real time that can retain much of the per-
sonality and character traits of the original animation. Due to this
choice of training data, we assume that we will have tens of min-

utes of usable animation. Furthermore, because we use animation
for a film-quality character, there is a large number of rig parame-
ters that our synthesis algorithm will need to control. Thus, we use
a form of the Gaussian Process Latent Variable Model (GPLVM) to
embed the rig parameters of the animation in a lower dimensional
space, and we synthesize new animations using this model.

Our work presents a new method to scale the input data to the
GPLVM to account for the nonlinear mapping between a charac-
ter’s rig parameters and its evaluated surface mesh. Further, we
present a novel method to synthesize new animation using the
GPLVM. Our method is based on a particle simulation, and we
demonstrate its effectiveness at generating new facial animation
for a non-human character. We found that GPLVMs trained with
a few homogeneous animations produce visually better results than
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one trained with many animations of varying types of motions. Our
method uses multiple GPLVMs, and we present a novel method to
synthesize smooth animations that transition between models. To
demonstrate the effectiveness of our work, we develop an interface
for our method to receive directions to control the animation in real-
time. We developed an interactive application to interface with our
method to show that our algorithm can synthesize compelling and
expressive animation in real-time.

2. Related Work

Statistical methods have been used to analyse and synthesize new
motion data [BH00, MK05, LBJK09]. In particular, the Gaussian
Process Latent Variable Model (GPLVM) [Law06] has been used
for a number of applications in animation such as satisfying con-
straints or tracking human motion [GMHP04, UFHF05, WFH08]
as well as interactive control [YL10,LWH∗12]. This model is used
to reduce the dimension of the motion data and to create a statis-
tical model of the animation. Modifications to the GPLVM have
been proposed to make it better suited for modeling motion data.
The GPLVM tends to keep far data separated in the reduced di-
mensional space, but it makes no effort to keep similar data points
close together. A number of methods have been proposed to ad-
dress this limitation. Back constraints [LQnC06] have been ap-
plied to the GPLVM to preserve local distances. Dynamic mod-
els [WFH06, Law07] have also been introduced to model the time
dependencies in animation data. A connectivity prior [LWH∗12]
has been proposed to ensure a high degree of connectivity among
the animation data embedded in the low-dimensional latent space.
Prior methods that model animation data with a GPLVM have
been applied to full-body motion capture data. In contrast with past
work, we apply a similar technique to hand-crafted animation for a
film-quality character. One key difference between motion capture
data and film-quality hand animation is that the hand animation lies
in a significantly higher dimensional space than the motion capture
data in terms of the number of parameters needed to specify a pose.

Data-driven approaches to character control and animation syn-
thesis have focused on full-body tasks, which are based on mo-
tion graphs [AF02,KGP02,LCR∗02,TLP07,LZ08,LLP09,MC12].
These methods use a graph structure to describe how motion clips
from a library can be connected and reordered to accomplish a task.
These approaches perform well with large training set; however,
smaller data sets might not be well-suited for motion graphs be-
cause a lack of variety and transitions in the motions. Other meth-
ods for character control include data-driven and physics-based
approaches [CBvdP09, MLPP09, LWH∗12, TGLT14]. All of these
methods are applied to full-body human motion or hand motion
[AK13]. The tasks the controllers are trained can be quantifiably
measured such as locomotion or reaching tasks. In contrast, we use
our method to animate a non-human character’s face. Tasks for fa-
cial animation are not as easy to quantify, and we therefore develop
a novel particle simulation-based method to control facial anima-
tion.

Facial animation of non-human characters can be controlled
by retargetting recorded expressions. A commonly used method
is blendshape mapping [BFJ∗00, CXH03, SSK∗11, BWP13,
CWLZ13], which maps expressions from an input model onto cor-

responding expressions from the target character. Motion is gen-
erated by then blending between the different facial shapes of
the character. This approach uses an input model such as a video
recording of a human to drive the animation of the character. Un-
like the blenshape mapping approaches, our method does not con-
trol facial animation with recordings of a model. Furthermore, we
do not require that the character’s face be animated with blend-
shapes. We make no assumptions about the character’s rig, but
specifically the face rig we used in our results is animated using
a combination of bones, blendshapes, and free-form deformations.
Other methods use speech recordings to control the facial anima-
tion [LP86, WL94, ET97, Bra99]. Our method does not use video
or speech recordings to control the facial animation. Instead we use
user interaction with an interactive application as input for our an-
imation synthesis algorithm. Another method for modeling facial
expressions allows users to manipulate the face directly and avoids
unnatural faces by learning model priors [LCXS09].

Animated characters are controlled through an underlying rig,
which deforms a surface mesh that defines the character. A variety
of methods exist to map a character’s rig controls to deformations
of the surface mesh [Bar84, SP86, MTLT88, SF98, LCF00] as well
as the inverse from a skeleton to rig space [HSK15]. Our method
makes no assumptions about rig controls and treats mapping from
the character rig to the surface mesh as an arbitrary nonlinear func-
tion, similar to the assumptions made in [HTC∗13].

3. Overview

Our work computes a low dimensional embedding for a set of train-
ing animation and uses the resulting model to generate new anima-
tion. The animation data is represented as character rig parameters,
which can be evaluated to generate a surface mesh of the character.
We make no assumptions about the mapping from rig parameters
to the mesh. Because the mapping is typically nonlinear, variation
in the rig controls might not necessarily correspond with a similar
variation in the surface mesh. We therefore scale each component
of the rig parameters based on an approximation of the influence
each control has on the mesh.

Next, we embed the scaled rig parameters in a low dimensional
space. We first use principal component analysis (PCA) to reduce
the data to an intermediate space. We then use then use a form of the
GPLVM to further reduce the dimension of the data. Our GPLVM
variant keeps similar poses in the animation close in the latent space
and keeps temporally close poses near each other as well. For pose
synthesis, we compute the maximum a posteriori estimate for the
most likely rig parameters given a low-dimensional latent point.
We use the learned models to synthesize new animations in real-
time. The current pose of a synthesized animation is represented
as a particle in the latent space. We apply forces to the particle
to push it towards user-defined targets. At each time step in the
simulation, we use the current location of the particle in the latent
space to generate the next pose in the animation using the GPLVM.
We found that this method creates expressive facial animations.

Because we train a separate GPLVM for each type of action, the
particle simulation by itself cannot generate animations that tran-
sition between models. To overcome this limitation, we compute
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matching points between the models. These matching points are
locations in the latent spaces that map to similar rig parameters.
Transitions between models are performed by moving the parti-
cle to one of these matching points, switching models, and starting
a new simulation at the corresponding matching point in the new
model.

4. Low Dimensional Embedding

Given a large set of training animation, represented as a sequence
of rig control parameters, our method learns a mapping between
a low dimensional latent space and rig parameters. This mapping
is generated in three stages. First, each rig control in the training
animation is scaled to weight the controls proportional to changes
in the final mesh. Second, the training animation is reduced lin-
early using Principal Component Analysis (PCA). Finally, the data
is mapped to a lower dimensional latent space using a form of the
Gaussian Process Latent Variable Model (GPLVM). After we have
found an embedding of the training data in the latent space, we can
then map any arbitrary point in the low dimensional space to values
for the rig controls.

4.1. Scaling Rig Controls

We assume that the character rig parameters p, when evaluated,
produces a surface mesh. The ith vertex of this mesh is given by
the function ei(p). We only assume that the rig evaluation func-
tion e(p) is continuous. Otherwise, we make no other assumptions
about the function to keep our method as general as possible. Thus,
the evaluation function will typically be highly nonlinear.

Depending on how the evaluation function e(p) is defined, large
changes in some rig parameters might result in small changes in
the output surface mesh while small changes for other parameters
might result in large changes in the mesh. Specifically for some
setting of the rig parameters p, the value

∥∥∥ ∂e(p)
∂pi

∥∥∥might be large for

the ith rig parameter, but the value
∥∥∥ ∂e(p)

∂p j

∥∥∥might be small for some
other rig control. Thus, there could exist some rig controls that have
a very small effect on the surface mesh but have a large variance
across the training animation. Because we will be using PCA, we
want to scale each component of the data so that the principal axes
of the transformation do not align with these controls with high
variance but low influence on the mesh.

To avoid this situation, we want to scale the rig parameters about
the sample average to obtain z = W(p− p̄)+ p̄ where W is a diag-
onal matrix and wi is the amount to scale the ith rig parameter. We
choose W such that a unit change in the scaled rig parameter space
corresponds with approximately a unit change in the surface mesh.
Specifically for the ith rig parameter,

∥∥∥∥ ∂

∂zi
e(W−1(z− p̄)+ p̄)

∥∥∥∥= 1 (1)

where z is any possible value of the scaled rig parameters.

We use p = W−1z and the chain rule to find that

∥∥∥∥∂e(p)
∂pi

∂

∂zi

[
w−1

i (zi− p̄i)+ p̄i

]∥∥∥∥= 1. (2)

We can use Equation 2 to solve for the weights and find that
wi =

∥∥∥ ∂e(p)
∂pi

∥∥∥. Because e(p) is a generally nonlinear function,
Equation 2 cannot be satisfied for all possible values of p for a
fixed W. Instead, we approximate the norm of the partial derivative
by evaluating the rig at the sample mean p̄ of the training data and
at several points about the mean. For rig parameter i, we construct
a least squares error problem to approximate the norm of the partial
derivative by

∥∥∥∥∂e(p)
∂pi

∥∥∥∥≈ argmin
w

2

∑
n=−2

(‖e(p̄)− e(p̄+nσi)‖−w‖nσi‖)2 (3)

where σi is a vector with the sample standard deviation of the
ith rig parameter in the ith position and zeros elsewhere. The values
n ∈ {−2,−1,0,1,2} were chosen experimentally, and this set was
found to produce good results. We solve this least squares problem
separately for each wi.

4.2. Linear Dimensionality Reduction

Typically, a fully-rigged main character for a feature film will have
on the order of thousands of rig controls. Some of these rig controls
might not be used in the training data, and some might have a small,
almost imperceptible effect on the animation. To remove these con-
trols and simplify the data, we linearly reduce the dimension of
the data by using Principal Component Analysis. This method will
treat the small variations in the data as noise and remove it. This ini-
tial linear reduction helps improve the results of the GPLVM that
is used later.

Let z represent the scaled rig parameters of a single frame of
animation. Suppose that there are Drig parameters and that there
are N total number of frames of animation in the training set. The
scaled animation data can be represented as Z = [z1,z2,z3, ...,zN ].
We then compute the singular value decomposition of the data
Z̄ = UΣVT where the matrix Z̄ is the matrix Z with the sample
mean subtracted from each column of the matrix. We choose the
number of principal components dpca to use by considering the ex-
plained variance of the model. The explained variance is given by
v(d) = ∑

d
i=1 σ

2
i /∑

k
i=1 σ

2
i , where σ

2
i is the ith singular value of the

normalized matrix Z̄ and k is the rank of the matrix. In our ex-
periments for our models, we chose dpca such that v(dpca)≈ 0.85.
With the number of principal components chosen, we define the
transformation matrix Tpca, which contains the first dpca columns
of the matrix U. We then represent the training data as the matrix
Y = TT

pcaZ̄.

We evaluated the difference between running PCA on the orig-
inal and scaled rig parameters to determine the effect scaling the
parameters has on the quality of the dimensionality reduction. We
found that when enough principal components are used to ensure

Article c© 2016 Bailey, Watt, and O’Brien
Eurographics Proceedings c© 2016 The Eurographics Association.

3



Stpehen W. Bailey, Martin Watt, and James F. O’Brien / Repurposing Hand Animation for Interactive Applications

that the explained variance is at or above 85%, there is no dis-
cernible difference quality of the animations between the scaled
and original rig parameters, but the GPLVMs described in the fol-
lowing section tended to perform better with the scaled rig pa-
rameters. The difference between the original rig parameters and
the compressed data, measured as

∥∥∥z−TpcaTT
pcaz

∥∥∥, is much larger
when using the scaled rig parameters compared to the unscaled pa-
rameters. When we use a small number of principal components,
animations compressed with the scaled rig parameters are visually
better than the animations compressed with the unscaled data. Fur-
thermore, the unscaled version often contains objectively undesir-
able meshes, such as the jaw of a character passing through the roof
of its mouth. Therefore, we conclude that quantitative comparisons
in the rig parameter space will not be sufficient to evaluate the ef-
fectiveness of our method.

4.3. Nonlinear Dimensionality Reduction

Given the linearly reduced data in the matrix Y, we now compute
a low-dimensional embedding through the use of a Gaussian Pro-
cess Latent Variable Model [Law06]. The GPLVM is a generative,
probabilistic model that we use to map nonlinearly the PCA trans-
formed data Y to a set of points X in a latent space of dimension
dgplvm where dgplvm < dpca. We model dynamics in the latent space
by placing a Gaussian process prior on the points X as described
in [Law07]. This dynamics prior will thus keep temporally close
data points close together spatially. Because we train our models
using multiple segments of animation, the GPLVM with a dynam-
ics prior will tend to keep separate segments far apart in the latent
space. This separation is caused by the GPLVM placing dissimilar
frames of animation far apart without trying to place similar frames
near each other. Therefore, we use the connectivity prior described
in [LWH∗12] in order to pull together similar frames of animation
from separate segments.

The GPLVM models the training data Y as the outputs of a Gaus-
sian process from the low dimensional embedding of the points X.
We assume that each output of the GP is independent so that

log p(Y|X) =
dpca

∑
i=1

logN(yi,:|0,Kx)

=−dpca

2
|Kx|−

1
2

tr
(

K−1
x YYT

)
+ const.

(4)

We denote the ith row of Y as yi,:. For the entries in the kernel
matrix Kx, we use the radial basis function, which is given by:

kX (xi,x j) = σ
2
rb f exp

(
− 1

2l2
x

∥∥xi−x j
∥∥2
)
+δi jσ

2
white. (5)

The kernel parameters σ
2
rb f , σ

2
white, and l2 are optimized when

the GPLVM is trained.

Our input data is composed of multiple segments of animation,
and we would like to model the dynamics of each segment. We
place a Gaussian process prior on the latent points X. The input to

the GP is time t of each frame. Each segment of animation is inde-
pendent from all others; thus, the prior places a Gaussian process
on each segment separately. The dynamics prior is given by

ψD(X, t) =
dgplvm

∑
i=1

logN(Xi,:|0,Kt). (6)

The entries of the kernel matrix Kt are computed by the radial
basis function. Furthermore, Ki j

t = 0 when frames i and j belong
to separate animation segments. See the description of the simple
hierarchical model in [Law07] for more details.

The connectivity prior provides a method to model the degree
of connectivity among the latent points X by using graph diffusion
kernels. We denote this prior with ψC(X). See the description of
the connectivity prior in [LWH∗12] for more details.

Combining the dynamics and connectivity priors, we
can express the conditional probability of X as p(X|t) ∝
expψD(X, t)expψC(X). We estimate the latent points X and
the hyper-parameters σrb f , σwhite, and lx through maximum a
posteriori (MAP) estimation. Thus, we want to maximize

log p(X,σrb f ,σwhite, lx|Y, t) =
log p(Y|X)+ψD(X, t)+ψC(X). (7)

To maximize Equation (7), we use scaled conjugate gradient.
The initial guess for the latent points is the first dgplvm rows of Y.
We manually set the hyper-parameters for the dynamics prior and
do not optimize these values. In Figure 2, we show a plot of several
animation curves embedded in a three dimensional latent space.

4.4. Mapping to Rig Controls

Once we have a trained a model, we are now able to reconstruct
rig control values from a new point x′ in the latent space. We first
find the most likely point in the dpca dimensional space given the
new point and the GPLVM model. Next, we multiply by the ma-
trix of principal components to obtain the scaled rig parameters.
Finally, we divide by the scaling factors and add the mean to each
parameter.

The distribution of a new point y given the corresponding latent
point x and the GPLVM model M is a Gaussian distribution where

p(y|x,M) = N(y|YK−1
x kx(x),kx(x,x)−kx(x)T Kxkx(x)) (8)

where kx(x) is a column vector whose ith entry is given by
kx(x)i = kx(xi,x). Because the distribution is Gaussian, the most
likely point in the dpca dimensional space is given by the mean
YK−1

x kx(x). The product YK−1
x can be precomputed, which would

allow this pose reconstruction problem to run in time linear to the
size of the training data for the model.
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Figure 2: Three dimensional latent space learned for a training set
of 9 examples of a roar with a total of 393 frames.

5. Animation Synthesis in Latent Space

New animations can be synthesized by generating a new path P =
[x1,x2, ...,xt ] through the latent space. The rig parameters for each
point in the path can be computed by mapping the point from the
latent space to the high dimensional rig control space. Because the
latent space provides a continuous mapping any smooth curve in
this low-dimensional space will result in smooth animation curves
for each rig parameter.

To synthesize a new path, we simulate a particle moving through
the latent space and track its position over time. We control the
particle using a Lagrange multiplier method to enforce constraints
on the system. For example, if we desire a path that does not stray
too far from a user-defined point, we define a constraint to enforce
this behavior. To add variations and noise to the path, we apply a
random force. We found that this particle simulation method works
well for synthesizing facial animations.

In order to achieve real-time performance, the number of training
points in the GPLVM must be small. Therefore, the training anima-
tion needs to be divided into sufficiently small subsets. Each subset
of animation corresponds with a specific type of expression or fa-
cial action such as a roar. A separate GPLVM is trained on each
subset of animation. Because these latent spaces are separate, we
need a method to map points from one model to another. With such
a mapping, the particle simulation can transition between models,
which allows for the synthesis of facial animations across multiple
subsets of the animation.

We conclude this sections with a descriptions of a set of low-
level “commands" to provide control of the synthesized animation.
These commands are used to control the particle in the latent space,
which thus gives control of the synthesized animation. The motiva-
tion for these commands is to develop a system reminiscent of the

method an artist might use to plan an animation of a character’s
face. These commands allow for a user or an application to specify
key poses in time, and our animation synthesizer generates motion
that transitions between the poses.

5.1. Particle Simulation

We synthesize curves in the latent space by tracking the position of
a particle in this space over time.

The input to our simulation is a path p(t) that the particle follows
through time. We apply two constraints to the system and a “ran-
dom" force to add noise to the path. The first constraint ensures that
the particle does not move too far from the path. The second con-
straint ensures that the particle remains in areas of high probability
in the GPLVM. Because there could be times when both constraints
cannot be satisfied simultaneously, we model the path-following
constraint as a hard constraint that must be satisfied, and the other
constraint is modeled as a soft constraint that can be violated.

Given some path p(t) parametrized by time, we want to en-
sure that the particle does not drift too far away from the curve.
To enforce this requirement, we apply the inequality constraint
‖x−p(t)‖2− r2 ≤ 0 to ensure that the particle at location x stays
within a distance r of the point p(t) at time t. Forward simula-
tion with this constraint is computed using the Lagrange multiplier
method described in [Bau72].

Let F be the force acting on the particle at time t. We use the
Lagrange multiplier method to compute an additional force Fc that
we apply to the particle to ensure that the constraint is satisfied.
The constraint force is given by Fc = λg where g = x(t)− p(t).
The multiplier λ for a particle of unit mass is given by

λ =
−gT F+G

gT g
. (9)

The scalar G is given by

G = (ẋ(t)− ṗ(t))T (ẋ(t)− ṗ(t))+

2α(gT ẋ(t)−gT ṗ(t))+ 1
2

β
2(gT g− r2). (10)

The parameters α and β are selected by the user to control how
quickly a system violating the constraints returns to a state satisfy-
ing them. We set β = α

2, which is suggested in [Bau72]. The term
Fc described above will apply a force to satisfy the equality con-
straint ‖x(t)−p(t)‖2− r2 = 0. To allow the particle to move freely
within the radius around the target point, we constrain the force Fc
to only point towards the target point p(t). This is accomplished by
setting λ = 0 whenever λ > 0.

Our second constraint pushes the particle towards high probabil-
ity regions in the latent space. The GPLVM provides a probability
distribution over the latent space p(x(t)|M), and we use this distri-
bution to push the particle towards “probable" regions, which can
provide better reconstructed poses than less probable regions of the
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latent space. However, we found that models trained with facial an-
imations can synthesize reasonable poses from less likely regions
of the latent space. We found that generally these lower probability
poses do not contain visual defects such as an overly stretched face
or interpenetrating meshes. Therefore, keeping the particle in a high
probability region is not critical and can be violated if necessary to
satisfy the path constraint. We model this likelihood constraint as a
force applied to the particle that points in the direction of the gra-
dient of the PDF. The magnitude of the force is determined by the
value of the PDF evaluated at the particle’s current location. If the
value is above some empirically chosen quantity v, the magnitude is
small, and if the value is below v, the magnitude is large. We model
this as a sigmoid function so that the force function is continuous
for numerical integration. The magnitude is expressed as

S(t) = a
(

1+ exp
(

p(x(t)|M)− v
l

))−1

, (11)

and the constraint force is expressed as

FGPLV M(t) = S(t)
∂p(x(t)|M)

∂x
/

∥∥∥∥∂p(x(t)|M)

∂x

∥∥∥∥ . (12)

The parameters a and l are defined by the user, and control the
magnitude of the force when the constraint is not satisfied and how
quickly the magnitude approaches a. Computing the partial deriva-
tives of the Gaussian process takes time quadratic to the size of
the training data. If the size of the training set is small, this can be
computed in real-time.

In addition to these constraint forces, we apply a random
force Frand(t) to add variation to the particle’s path. We model
this force as a randomly drawn, zero-mean Gaussian process:
Frand(t) ∼ GP(0,k(t, t′)). Each component of Frand(t) is in-
dependent of all others. The covariance function is given by
k(t, t′) = α exp

(
−(2γ)−1(t− t′)2

)
, where α and γ are user-

defined parameters that control the magnitude and smoothness of
the random force.

This random force adds noise and variations to the particle’s
movement through the latent space. Thus, a particle following the
same path multiple times will have slight variations in each rep-
etition, which will generate unique animations with small but no-
ticeable differences. Variations in the animation could be achieved
through other means such as perturbing the path p(t); however, we
did not evaluate these other possibilities.

In our experiments, we simulate the particle forward in time
using a fourth-order Runge-Kutta integration method. We used a
piecewise linear function for the path p(t), which is defined by a
set of points [p1,p2, ...,pn] such that p(ti) = pi and ti is the time
of the ith frame of animation. We do not integrate across multiple
frames of animation to avoid integrating over discontinuities in the
piecewise path function p(t). Section 5.3 describes methods to de-
fine p(t).

5.2. Mapping Between Models

A large set of heterogeneous motions cannot be accurately embed-
ded in a low dimensional (d ≤ 5) latent space. Therefore, we divide
the training animation into small sets of similar expressions and
compute the embedding in the latent space for each subset sepa-
rately. The drawback of training separate models is that animations
transitioning between multiple models cannot be synthesized us-
ing our particle simulation method. This problem arises because a
continuous path between models does not exist. In this section, we
describe a method to synthesize smooth animations that transition
between latent spaces.

To create a path between two models M1 and M2, we first pre-
compute a set S of corresponding points in both latent spaces. A
pair of matching points (x1,x2) where x1 ∈M1 and x2 ∈M2 is in-
cluded in S if ‖g(x1;M1)−g(x2;M2)‖2 < ε where g(x;M) is the
function that maps x to the rig parameter space. Thus, we want
to identify pairs of points in the latent spaces whose reconstructed
poses are similar. The set of matching points identifies points in the
two models, which can be used as bridges between the two models.
To create a curve that moves between model M1 to M2, we create a
path in M1 that ends at a point in S for the model and then create a
path that starts at the matching point in M2.

To identify a pair of matching points for models M1 and M2,
we fix a point x1 ∈ M1 and compute the reconstructed rig param-
eters z1 = g(x1;M1). The point x1 can be any point; however, in
our implementation, we restricted x1 to be from the set of latent
points corresponding to the training animation for the model. Next,
the point z1 is transformed by the linear dimensionality reduction
specified by model M2

ŷ1 = TT
2 [W2(z1−m2)] (13)

where T2 is the first d principal components of the PCA trans-
formation given in model M2, W2 is the diagonal matrix of scale
values for each component, and m2 is the mean of the training data
used in model M2.

The next step is to find the point x2 in the latent space of model
M2 such that

x2 = argmin
x

∥∥∥∥ŷ1− argmax
y

logp(y|x,M2)

∥∥∥∥2

. (14)

Because yi = f (x)+ ε where ε is additive Gaussian white noise,
the maximum of p(y|x,M2) occurs when y = f∗ where f∗ =
K∗[Kx]

−1Y2 is the noise-free output for the test point x. There-
fore, Equation (14) can be written as

x2 = argmin
x

∥∥∥ŷ1−K∗[Kx]
−1Y2

∥∥∥2
. (15)

The problem of finding the best matching x2 ∈ M2 giving the
point x1 ∈M1 is now formulated as a nonlinear optimization prob-
lem. We solve this problem by using the scaled conjugate gradi-
ent algorithm. However, because the function is multi-modal, we
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Figure 3: Four examples of the best-matching poses found between
two models. In each pair, the pose on the left is generated from a
model trained on animations with grumpy-looking animations, and
the pose on the right is generated from happy-looking animations.

run the optimization algorithm multiple times with randomly se-
lected initial values to attempt to find the global minimizer. Fur-
thermore, care needs to be taken not to take large steps during the
optimization routine because the gradient of the objective function
quickly goes to zero as x2 moves away from the training points in
the model.

In our implementation, we identified pairs of matching points
between models M1 and M2 by computing matching points x2 for
each latent point of the training data for model M1. We then eval-
uated the Euclidean distance between the reconstructed rig space
poses for each pair of matching points. Pairs with distances below
some user-defined threshold were kept while all other pairs were
discarded. With this method, we obtained between 10-50 transition
points between each pair of models. For models trained on similar-
looking animations, the transition points were spread throughout
the latent space. Models trained with distinct animations tended to
have the transition points clustered around one or two small regions
of the latent space.

To create an animation that transitions between two models, we
generate a curve in the first model that ends at one of the precom-
puted transition points and a curve in the second model that starts
at the corresponding transition point from the first model. The ani-
mation is synthesized by reconstructing the poses along the curves
and placing the animation from the second model right after the
first. As seen in Figure 3, the poses reconstructed from matching
latent points in two models are not necessarily identical. As a re-
sult, there will be a discontinuity in the animation at the transition
between the two models. To overcome this problem, we perform a
short blend between the two poses in the rig parameter space at the
transition point.

5.3. Synthesis Control

We use the particle simulation method described above to synthe-
size animation for the face of a non-human character and develop
a set of commands to provide intuitive control of the character’s
expression. The high-level reasoning for using these commands is
that we want to provide control over what pose the character has
at a specific time in an animation. With these poses, our synthesis
algorithm then generates transitions between the poses and models
specified in the commands.

MOVE: The move command takes a target point t in the latent
space as input. The synthesized animation is controlled by moving
the particle from its current position in the latent space to the target
point. This is accomplished by setting the particle’s path function
p(t). We tested two methods to generate the path. The first method
creates a straight line from the current point to the target. The sec-
ond method uses the shortest path in a complete weighted graph
G of the training data. In the graph, we represent each frame of
data as a vertex, and the weights between vertices are computed by
w(xi,x j) =

∥∥xi−x j
∥∥−p, which is similar to the graph constructed

for the connectivity prior [LWH∗12]. In our implementation, we
found that setting p = 4 yielded good results. We also add the start
and end points as vertices in the graph G. We re-sample the result-
ing path so that

∥∥∥ ∂p(t)
∂t

∥∥∥ is constant for all t. This ensures that the
particle follows the path at a consistent speed. We found that both
path-generating methods create compelling animation. The only
difference between the two is that the straight line path is shorter,
and thus a particle following this path will reach the target in less
time.

IDLE: When the animated character is not performing an action,
we would like for the character to have an “idling" animation, and
we would like to control the expression of the character as it idles.
We found that we can synthesize idling animations by picking a
point p in the latent space corresponding with a user-specified pose.
This pose is a hand-selected expression. We let the particle move
randomly within a radius r about the point to create variations of
that pose. Keeping the particle within the radius is accomplished
by setting the particle’s path following function to p(t) = p for the
time we want idle about the point. To add variety to the animation,
multiple user-specified points can be used. With multiple points,
the synthesis can be controlled by first picking a point from the
set to move to. Next, the particle hovers about that point for a fixed
amount of time. Finally, an new point is selected, and the simulation
repeats by moving to this new point and hovering. See the accom-
panying video for examples of synthesized idling animations.

TRANSITION: The transition command is used to generate a
continuous animation between two models. This command uses the
previously described MOVE and IDLE commands. To transition
from model M1 to model M2, our method moves the particle from
its current position in model M1 to the nearest precomputed match-
ing point in the latent space. When the particle is close to the point,
it then idles about that point and the particle in M2 also begins to
idle about the corresponding matching point. We finish the transi-
tion by performing a blend between the high-dimensional rig pa-
rameters from the two models while the particles are idling. Please
see the video for examples of transitions.

PLAY SEGMENT: Occasionally, we might want to play part
of an animation unmodified directly from the training set. We play
the animation by using the embedding of the sequence in the latent
space. We use the MOVE command to position the particle near the
starting pose of the animation. When the particle is close enough,
we stop the simulation and move the particle along the path of the
embedded animation. When moving the particle to the start, we
adjust the radius r to ensure that it has moved close to the start to
avoid discontinuities when the animation segment starts playing.
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Figure 4: Set of frames from an animation synthesized using a model trained on a set of "surprise" expressions.

Figure 5: A visualization of the layered Deformation System for
Toothless’s facial rig that enables real time free-form facial control
shaping.

6. Results

We used the method described above to synthesize animations at
interactive frame rates. The input to our algorithm is film-quality
hand animation. For a feature film, a main character might have
about 20 minutes of animation. We manually separated the data into
sets of similar expressions and also removed any visually bad data.
For example, a character might be off screen and is not animated,
or a character might be animated for one specific camera angle and
does not look acceptable from all possible viewing angles. Using
our method, we trained a separate model for each type of expression
that we manually labeled in the training data. To evaluate the effec-
tiveness of our method, we compared transitions synthesized with
our method to transitions generated using Motion Graphs [KGP02].
Additionally, we synthesized scripted animations off-line and cre-
ated an interactive game featuring synthesized real-time animation
using our algorithm to demonstrate the application of our method.

We used the animation data from the hero dragon character
Toothless in the feature film How to Train Your Dragon 2. This data
is sampled at 24 FPS, and 742 face rig controls are used in our al-
gorithm. Toothless’s facial rig is a multi-layered design [PHW∗15],
which provides control ranging from coarse to fine deformations.
Figure 5 shows the layers of the face rig. There are four main lay-
ers of the face rig that involve both bones and blenshapes. First, the
bones control large, gross deformations of the mesh. Second, in-
termediate blendshapes are applied for coarse control. Third, fine-
control blendshapes are used. Finally, free-form deformations are
applied to allow custom shapes after the first three layers have been
evaluated.

To demonstrate how well our method can reuse previous ani-
mation, we use only data from this film and do not hand animate
any data specific for our applications. We identified eight expres-
sion sets: happy, grumpy, bored, curious, and neutral, roar, head
shake, and surprise. We manually labeled animations that fit into
these categories and trained a GPLVM on each one separately. The

labeling task required several hours to complete. Each model con-
tained between 100 to 800 frames of animation, and the latent space
for each model has three dimensions. We chose three dimensions
experimentally by training models with different dimensions. We
found that for our small data sets, the quality of animations synthe-
sized with models of three dimensions or higher were perceptually
similar. Therefore, we chose the smallest dimension to minimize
the number of unknown variables we solve for when training the
GPLVM. In total, we included 3745 usable frames of animation in
our training data, which is equivalent to 156 seconds of animation.

Because our method solves a problem similar to Motion Graphs
and methods based on Motion Graphs, we compare expression tran-
sitions synthesized with our method to those we synthesized using
Motion Graphs described in [KGP02]. In our method, we used on
average 12 frames to blend between two models. Therefore, we
used the same number of frames to synthesize the blends between
segments of animation using Motion Graphs for comparison. In the
accompanying video, we show transitions synthesized using both
methods. For Motion Graphs, we picked transitions between two
sets of animation by picking transitions points between animation
sequences with small distances in the rig parameter space as de-
scribed in their paper. Visually, we found that in some cases, transi-
tions synthesized using Motion Graphs appear sudden and unnatu-
ral. We found that these sudden transitions occur when the two an-
imations do not contain large movements. However, Motion Graph
blends are not noticeable when transitioning between motions con-
taining large movements. Our method, on the other hand is able
to synthesize smooth transitions between different expressions re-
gardless of the amount of motion before and after the transition.

We found that because our sets of training animation are small
and contain heterogeneous motions, the Motion Graph algorithm
was unable to find transitions with small distances going towards
or away from most animation segments. Thus, a motion graph built
on this data would use a small fraction of the data. Our method,
however, makes use of the entire data set and is capable of transi-
tioning to and from any pose.

We also evaluate our method by synthesizing scripted anima-
tions. We directly used our interface for the synthesis algorithm.
We provided control over which command is sent to the system
and when. This give the user the ability to specify poses that the
character needs to make at a scripted time. Because the anima-
tion can be computed in real-time, the user can quickly see how
changes in the script affect the animation. All of the off-line an-
imations shown in our accompanying video are synthesized with
this method. We found that scripting an animation allows for some-

Article c© 2016 Bailey, Watt, and O’Brien
Eurographics Proceedings c© 2016 The Eurographics Association.

8



Stpehen W. Bailey, Martin Watt, and James F. O’Brien / Repurposing Hand Animation for Interactive Applications

one without an artistic background to author novel and expressive
animations quickly.

We demonstrate the effectiveness of our algorithm through an
interactive game of Tic-Tac-Toe, in which the user plays against
the computer. We synthesize animation for Toothless’s face to react
in real time with the results of the game. During Toothless’s turn, he
holds a ponderous expression. Although the computer logic for Tic-
Tac-Toe strategy can be computed in milliseconds, we intentionally
extend Toothless’s deliberation time to allow for expressions as if
he were playing a cognitively difficult game. During the player’s
turn, he squints and scowls as if he were intimidating the player.
When Toothless loses a round in the game, he roars and expresses
anger, and when the he wins, he expresses happiness. If Toothless
misses a move to block the player from winning, he displays an
expression of surprise. All of these expressions are scripted using
commands described in Section 5.3.

We found that eye movement is context specific. Because syn-
thesizing new animation with eye movement lead to unrealistic an-
imation, we fixed the eyes to look forward and do not include the
eyes’ rig parameters in the synthesis model.

For each emotional state animated in the game, we created a set
of scripts containing specific commands. When the game needed
to synthesize a particular emotional expression, it randomly picked
a script from the corresponding set to run. Only the head shaking
animation was scripted using the PLAY command. All other ani-
mations are scripted using TRANSITION, MOVE, and IDLE.

We tested our application on an HP Z840 workstation with two
Intel Xeon E5-2687w processors running at 3.1GHz, providing 16
cores in total. The machine has 32GB RAM. To compute the sur-
face meshes, we use LibEE [WCP∗12], a multithreaded evaluation
engine for calculating Toothless’s surface mesh.

To achieve interactive frame rates for rig evaluation, the reso-
lution of Toothless’s final skin mesh was reduced by a factor of
5. This was done non-uniformly to ensure resolution was retained
in the most critical areas for expression, e.g. eyes and wrinkles
around the nose. Apart from the mesh resolution reduction, no other
changes were made to the face rig compared with the original pro-
duction rig used in the film. LibEE is also the same engine used to
evaluate the rig during the production of the film; therefore, the ani-
mation and deformations are all the same as used in production. We
render the mesh for the real-time application using OpenGL. The
application runs successfully at 24 frames per second. Please see
the supplementary video for a recording of the application running
in real time.

7. Discussion

Our labeled training data for each expression formed small sets
ranging from 100 to 800 frames of animation. Because of the small
size of these sets, GPLVMs worked well to model the variation in
the motion for each expression. However, dividing the data into
separate sets of expressions has limitations. We cannot mix expres-
sions because the models are separate. For example, our method
is unable to combine “happy” and “surprise” expressions to syn-
thesize a hybrid expression from both models. Generating these

mixed expressions could be possible by training a GPLVM on a
large, combined data set. However, we found that a GPLVM trained
on this mixed set did not perform well because of the dissimilari-
ties in the motions from the separate expressions. Additionally, the
computation time required to train the model grows cubically with
the size of the training data, and we found that the training times
were unfeasibly long without using Gaussian process approxima-
tion techniques.

Our method’s ability to synthesize transitions between models
depends on its ability to find matching points between two expres-
sion models. Suppose that two GPLVM models are so different that
no pair of similar points can be found. Then synthesizing transitions
between the two might need to pass through a third model that has
matching points with the two. For example, a transition going from
happy to grumpy expressions might need to pass through a neutral
expression if the happy and grumpy models share no similar points.
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