
Fast and Deep Facial Deformations

STEPHEN W. BAILEY, University of California, Berkeley and Unity Technologies
DALTON OMENS, University of California, Berkeley
PAUL DILORENZO, DreamWorks Animation
JAMES F. O’BRIEN, University of California, Berkeley

(a) Ground Truth (b) Refined Approximation (c) Coarse Approximation (d) LBS Approximation

Fig. 1. Side-by-side comparison of facial mesh deformations using our coarse and refined approximations as well as an approximation generated by linear
blend skinning. The most noticeable difference, shown on the second row, is observed around the nasal region of the mesh.

Film-quality characters typically display highly complex and expressive
facial deformation. The underlying rigs used to animate the deformations of
a character’s face are often computationally expensive, requiring high-end
hardware to deform the mesh at interactive rates. In this paper, we present a
method using convolutional neural networks for approximating the mesh de-
formations of characters’ faces. For the models we tested, our approximation
runs up to 17 times faster than the original facial rig while still maintaining a
high level of fidelity to the original rig. We also propose an extension to the
approximation for handling high-frequency deformations such as fine skin
wrinkles. While the implementation of the original animation rig depends on
an extensive set of proprietary libraries making it difficult to install outside
of an in-house development environment, our fast approximation relies on
the widely available and easily deployed TensorFlow libraries. In addition to
allowing high frame rate evaluation on modest hardware and in a wide range
of computing environments, the large speed increase also enables interactive
inverse kinematics on the animation rig. We demonstrate our approach and

Authors’ addresses: Stephen W. Bailey, University of California, Berkeley, Unity Tech-
nologies; Dalton Omens, University of California, Berkeley; Paul DiLorenzo, Dream-
Works Animation; James F. O’Brien, University of California, Berkeley.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART94 $15.00
https://doi.org/10.1145/3386569.3392397

its applicability through interactive character posing and real-time facial
performance capture.

CCSConcepts: •Computingmethodologies→Neural networks; Shape
modeling; Animation.

Additional Key Words and Phrases: character rig, facial animation, mesh
deformations, deep learning, function approximation

ACM Reference Format:
Stephen W. Bailey, Dalton Omens, Paul DiLorenzo, and James F. O’Brien.
2020. Fast and Deep Facial Deformations. ACM Trans. Graph. 39, 4, Article 94
(July 2020), 15 pages. https://doi.org/10.1145/3386569.3392397

1 INTRODUCTION
Character facial rigs for video games and other real-time applica-
tions are often controlled by sets of bones or blendshapes. Although
these rigging methods can be computed quickly, they generally sac-
rifice fine-scale details for speed. Expressing nuanced deformations
with these real-time rigs is challenging and often requires additional
computational layers added to the underlying rig. Some such ad-
ditions for increasing the level of detail in the mesh deformation
include pose space deformations [Lewis et al. 2000] and wrinkle
maps. However, despite these improvements, the level of detail in
film-quality facial rigs is noticeably better when compared with
real-time rigs. The primary reason why film-quality facial rigs con-
tain more sophisticated mesh deformations is because they are not
constrained by real-time requirements.

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392397
https://doi.org/10.1145/3386569.3392397

94:2 • Bailey et al.

Facial rigs for film require a significant amount of computation to
create realistic and expressive mesh deformations. When evaluated
on a high-end machine, these facial rigs might run at a rate of only
10-30 FPS, and would run even slower on consumer-level devices.
Furthermore, animation studios typically develop in-house rigging
software on which their characters are developed. These rigs are
limited to their custom animation engines, and porting a character
for use outside of the in-house software can be challenging and
time-consuming. Thus, due to computational limits and portability,
film-quality characters are rarely used outside of the film for which
they are designed.

Recently, Bailey et al. [2018] proposed a method to approximate
body deformations of film-quality character rigs. However, their
method relies on an underlying skeleton to approximate the de-
formations. Unlike body rigs, facial rigs do not have an extensive
skeletal structure that can be utilized for the deformation approx-
imation. To overcome this limitation, we propose a novel method
for approximating deformations of facial meshes. Our approxima-
tion accurately computes deformations of the facial mesh, including
skin, mouth interior, teeth, and other structures. Our approach uses
convolutional neural networks (CNNs) to take advantage of the
types of deformations found in facial meshes. The method computes
the deformation in three separate parts: a coarse approximation, a
refined approximation, and an approximation for rigid components
of the mesh. Our method preserves high-frequency detail in the
mesh (Figure 1) while running up to 17x faster than the production
rigs that we tested.

Furthermore, we implement our approximation model in Tensor-
Flow [Abadi et al. 2015], an open-source machine learning library,
which allows the facial rig to transcend the proprietary limitations
of the original rigging software used to author the character and
allows the model to be deployed on a wider variety of devices and
applications. In addition, the rig approximation can easily be evalu-
ated on both the CPU and the GPU without any additional effort.
Because our model is neural network-based, the approximation is
fully differentiable. We demonstrate the usefulness of this property
by developing an inverse kinematics-based posing application as
well as a facial performance capture system.

2 RELATED WORK
Facial deformation systems for animated characters vary widely in
their methods and complexity. Often, facial models combine mul-
tiple deformation methods to achieve their final result. One of the
simplest and fastest ways to compute deformation is from an un-
derlying skeleton. Skeleton subspace deformation (SSD) [Magnenat-
Thalmann et al. 1988], also called linear blend skinning (LBS), is
popular due to its simplicity and speed. Due to the well-known
shortcomings of SSD, like the candy-wrapper effect, improvements
have been investigated such as multi-weight enveloping [Wang
and Phillips 2002] and dual-quaternion skinning [Kavan et al. 2007]
which improve the quality without noticeably impacting the evalu-
ation speed. While this class of methods is often used as the base
deformation system for a character’s body, it is often combined with
other methods to rig a character’s face. A more common approach
for a facial deformation system is blendshapes [Kleiser 1989; Parke

1972, 1974] which linearly combine a set of artist-created facial ex-
pressions. This method is also fast to evaluate but is too limiting
by itself for film-quality character rigs that could require hundreds
of blendshapes to be keyed every frame in an animation. Another
approach to construct a facial model is through physically-based
deformation for better realism and ease of generating realistic poses
[Cong et al. 2015; Ichim et al. 2017; Sifakis et al. 2005]. In complex
facial models, all of these techniques and others may be combined
which generally results in a high cost and low evaluation speed.

For real-time applications, it is necessary to construct a facial de-
formation model which preserves detail without incurring too great
a computational cost. One approach [Bickel et al. 2008] utilizes pose-
space deformation [Lewis et al. 2000] in a hybrid approach which
computes the base deformation using SSD and learns amodel to com-
pute high-fidelity, nonlinear details, like wrinkles, which are applied
on top of the base. For efficient computation of physically-based de-
formation, Hahn et al. [2013] improves on rig-space physics [Hahn
et al. 2012] for real-time results on production-quality character
rigs. These approaches are sufficient in achieving high performance
for the systems they are built upon, but we seek to find an efficient
representation for an existing high-quality rig, whose deformation
model may be slow to compute on lower-powered hardware without
needing to optimize the complex character rig.

There exist many different approaches to approximate an existing
deformation model given a set of example poses. A goal of most of
these approaches is to construct a more computationally efficient
representation of the deformation function. One of the skinning
decomposition methods [Le and Deng 2012] finds the bone trans-
formations and skin weights for a skeleton subspace deformation
model given a set of example poses. Similarly, Le and Deng [2014]
also finds a SSD representation of the deformation, but organized in
a skeletal hierarchy for easier animation afterward. Feng et al. [2008]
learns a skinned mesh via SSD from example data in order to ani-
mate with control points. Because a bone-based deformation system
is not the best way to represent facial deformations, these meth-
ods alone are not suitable for our purposes. Sphere-Meshes [Thiery
et al. 2016] decompose a mesh animation into a set of animated
spheres, which can be keyframed afterwards for animation. This
approach is also unsuitable for high-quality character animation
due to the difficulty of representing fine details. Specifically targeted
at facial animation, Li et al. [2010] and Neumann et al. [2013] learn
new parametric rig models like blendshapes from example poses.
Garrido et al. [2016] create facial rigs based on statistical models
such that the appearance of the rig closely matches the appearance
of a recorded actor. All of these methods learn a completely new
rig representation with different controls than those present in the
original rig. Our goal is to approximate an existing facial rig and
maintain the same controls so an artist would not have to re-learn
the control parameters.
Past research that attempts to approximate an existing rig func-

tion often assumes an underlying blendshape model [Seo et al. 2011]
or an underlying skeletal structure, while our method does not make
such strong assumptions about the facial rig. EigenSkin [Kry et al.
2002] efficiently computes high-fidelity nonlinear deformation on
GPU via an error-optimal pose-dependent displacement basis con-
structed from example meshes. This method assumes an underlying

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

Fast and Deep Facial Deformations • 94:3

SSD representation of a given rig and uses it in its computation.
Mohr and Gleicher [2003] learns an augmented SSD skinning model
with additional joints from an existing SSD rig. The work of Bailey
et al. [2018] assumes an underlying skeleton and uses the skeletal
deformation as a base on which a fine-detail nonlinear displacement
is overlaid. In this paper, we learn a deformation model without the
assumption of a skeletal system, which is appropriate for complex
facial rigs.
In order to support inverse kinematics (IK) for a facial rig in

real-time, an efficient and accurate inversion of the rig function is
necessary to compute character poses given a set of constraints.
Due to the complexity of facial rigs, traditional solutions for the IK
problem, which has been well-studied [Buss and Kim 2005; Girard
andMaciejewski 1985; Mukai and Kuriyama 2005; Rose III et al. 2001;
Welman 1993], are not easily applicable to film-quality facial models
due to the requirement of a differentiable rig function. There is exist-
ing research in computing blendshape parameters from landmarks
[Bickel et al. 2008; Lewis and Anjyo 2010; Zhang et al. 2004], but our
work seeks to allow for the inversion of an arbitrary black-box rig
function. Prior work has explored solutions to this problem. Xiao
et al. [2006] utilizes an iterative optimization approach; however,
their method is not entirely rig-agnostic as it is designed to optimize
the inversion of a pose-space deformation rig. Holden et al. [2017]
successfully inverts a black-box rig function using two nonlinear
methods: Gaussian process regression and feed-forward neural net-
works. In contrast, our approach uses deep-learning methods to
approximate the original rig function. Due to the neural network,
the gradient of the rig function can be estimated through the rig
approximation, which can then be used to estimate the inverse rig
function.
Recently, deep convolutional methods have been developed for

data-driven mesh regression problems. These methods utilize the
power and flexibility of deep neural networks for applications rang-
ing from facial reconstruction [Feng et al. 2018] and facial anima-
tion [Laine et al. 2017] to cloth simulation [Jin et al. 2018]. One way
to apply CNNs tomeshes is by definingmesh convolution operations.
Litany et al. [2017] introduces graph convolutional autoencoders,
while Ranjan et al. [2018] uses a similar idea to generate 3D faces.
MeshCNN [Hanocka et al. 2019] defines specialized convolution and
pooling operations on triangle meshes. Because our applications are
centered around efficiency, using these mesh convolutions would
be too computationally expensive. Traditional CNNs operate on 2D
images and feature maps. In order to reconstruct 3D deformations
using these models, a mapping must be created between the feature
map space and vertex positions. Masci et al. [2015] and Boscaini
et al. [2016] apply convolutions to a mesh by parameterizing the
mesh around a small local area. Sinha et al. [2016] applies CNNs
by projecting a mesh onto a spherical domain then “cutting up” the
projection. Other works [Feng et al. 2018; Jin et al. 2018; Lähner et al.
2018] use texture (UV) maps to map the vertex positions to 2D space.
In this way, the networks learn to predict 2-dimensional feature
maps but they represent 3-dimensional coordinates. Convolutional
neural networks have seen success in prior work due to the spatial
coherence of vertex positions being preserved in transformed space.
Previous work has generated UV maps from perspective projections

[Feng et al. 2018] or scans [Jin et al. 2018; Lähner et al. 2018]. Be-
cause our work assumes a complete character rig, we use a UV map
created by an artist to compute vertex positions from a 2D feature
space.

3 FACIAL APPROXIMATION
Given a character’s facial rig with a polygonal mesh, let V denote
the set of vertex coordinates in the mesh with |V| = n vertices. Let
p represent the rig parameters of the characters, and let V = r(p) be
the rig function that maps the parameters to a deformed mesh. Our
method focuses on approximating this rig function r(p).

Our approach utilizes artist-created texture coordinatesU ∈ Rn×2

of the facial mesh. The approximation relies on convolutional neural
networks, which generate deformation maps given input rig param-
eters. The deformation maps are sampled at texture coordinates to
approximate vertex positions in the mesh. Many parameters for a
facial rig deform local regions of the mesh, and the rig parameters
can be viewed as local operations on the mesh. By design, a CNN
performs local computations on a feature map. Assuming that the
local information in a mesh is preserved in the texture coordinates,
a CNN is ideal for approximating the rig function.
Our model is divided into two stages: a coarse approximation

and a refined approximation (Figure 2). The coarse approximation
operates on the entire mesh. To ensure that the model executes
quickly, the coarse approximation is comprised of multiple CNNs
that output low resolution deformation maps. As a result, high-
frequency details in the deformation are lost. To handle this detail
loss, we propose a refined approximation composed of additional
CNNs that output higher resolution deformation maps. These mod-
els focus only on vertex-dense regions of the mesh to approximate
these high-frequency deformations. To further improve the model’s
efficiency, we identify segments of the mesh that only undergo rigid
rotations and translations within the rig function. These segments
are approximated with a faster rigid approximation instead of the
more complex CNN approximation.

3.1 Coarse Model
We assume that the facial mesh is divided into multiple segments,
which is common for artist-created facial rigs. Each vertex is as-
signed to a single mesh segment. Let m indicate the number of
segments in the mesh, and let Vk and Uk denote the set of vertex
positions and texture coordinates in mesh segment k . The coarse
approximation also works with facial rigs that are not segmented,
and in this case, we would setm = 1, and the full mesh is contained
in the single segment.
The coarse model computes the deformed mesh by first gen-

erating a deformation map for each mesh segment in the facial
rig and then computing vertex positions through the maps. The
function Ik = f (p;θk) computes a deformation map for mesh seg-
ment k given rig parameters p. The function f is a neural network
consisting of several dense layers and convolutional layers and is
parameterized by θk (Figure 3). Vertex offsets ∆k are computed by
sampling deformation map Ik at texture coordinates Uk . We repre-
sent this sampling step as ∆k = g(Ik ;Uk), which outputs the vertex
offsets. Because each vertex is assigned to a single mesh segment,

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

94:4 • Bailey et al.

+

Rig	Parameters
Coarse	Models

...

Interpolation	Step

Deformed	Mesh+

Deformation
Maps

UV Map Vertex
Offsets

| |�̃
�

3

�1

��

�1

... �

Neutral	Mesh

�
1

′

��
′

...

�

Refinement
Vertex	Sets

Sample Vertex
OffsetsInterpolation	S

tep

��

Refinement
Models

...

�1
′

��
′

p

Fig. 2. Diagram of the approximation model. Rig parameters are used as input to convolutional networks which generate a deformation map for each mesh
segment. Vertex offsets are extracted by bilinear interpolation of the deformation map at each vertex position in texture coordinate space. These offsets are
added to the neutral pose to reach the desired deformation. For the refinement model, only a subset of the total active vertices is used.

Coarse	Model

Refinement	Model

Input

256

512

16
8 16

16 16 16 3

8 8 16
32 32 32 32

Input

256

512

16
8 16

16 16 16
3

8 8 16
32 32 32

64
16

64
16

64
16

64

dense layer

reshape upsample

convolution

Fig. 3. Detail of course and refine models. All convolutions use 3x3 kernels
except for the last layer, which uses a 1x1 kernel. All layers but the last use the
leaky ReLU activation function, and no activation function is applied to the
last layer. All non-dense layers are square in the image plane. Upsampling
is achieved through nearest-neighbor interpolation.

the vertex offsets for the full mesh are obtained by concatenating
the offsets for each segment such that ∆ = ∪k ∈{1, ...,m }∆k . The
approximation computes the final vertex positions for the mesh by
adding the offsets to the mesh’s neutral pose.

Given the approximation model, we next define a loss function to
find the optimal model parameters θk . We propose a loss function
that both penalizes inaccuracies in approximated vertex positions
as well as inaccuracies in face normals on the mesh. Given a target
mesh V, and the approximated vertex offsets ∆, the loss function is
defined as

L(V,∆) =
1
n

n∑
i=1

vi − (V0 + ∆)i

1 + αn

1
f

f∑
i=1

∥ni − ñi ∥1 (1)

where αn is a scaling factor hand-tuned by the user. Experimentally,
we found that αn = 5 works well. In the loss, ni is the normal of face
i in the mesh V, and ñi is the normal of face i in the approximated
mesh with vertex positions V0 +∆ and a total of f faces in the mesh
topology. We use the L1 loss instead of the L2 loss because it pro-
duces sharper features. We learn the mapping from rig parameters
to vertex offsets end-to-end without supervision on the intermedi-
ary deformation maps. Furthermore, we do not optimize the texture
coordinates and rely instead on the artist-created coordinates.
Because the approximation model works on separate mesh seg-

ments, themodel could produce discontinuities acrossmesh segment
boundaries and seams. To minimize this potential problem, the error
function strongly penalizes inaccurate face normals, which encour-
ages smooth results along mesh segment boundaries. Penalizing
normal errors also suppresses low-amplitude, high-frequency errors
that are visually disturbing.
To help with model training, each network is provided only a

subset of the rig parameters. The subset contains all of the rig
parameters that can deform any vertexwithin themesh segment that
the model is approximating. All other rig parameters are excluded
from the network’s inputs. As a result, the network does not need
to learn which parameters to ignore and will avoid being negatively
affected by the noise provided by inputs that have no influence on
the outputs.

3.2 Refinement Model
In the coarse approximation model, the resolutions of the deforma-
tion maps Ik are intentionally kept small to reduce the computa-
tional complexity. However, in texture coordinate space, vertices in
dense regions of the mesh could be placed less than a pixel apart
in the small deformation maps. If these vertices undergo a high-
frequency deformation, such as skin wrinkle, then the approxima-
tion model will be unable to recreate this deformation accurately.
The bottleneck in this case is the resolution of the map output by the

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

Fast and Deep Facial Deformations • 94:5

CNN. To overcome this limitation, we propose applying refinement
models that focus exclusively on these vertex-dense regions of the
mesh.
First, we identify sets of vertices that correspond with regions

of large error in the approximation. We discuss vertex selection
for the refinement model in Section 3.3. Each set is then defined
as a new mesh segment. The texture coordinates for each vertex
in the new mesh segments are scaled to fill the full resolution of
the refinement deformation maps. As in the coarse approximation,
no vertex is assigned to multiple mesh segments. Additionally, not
every vertex is assigned to a mesh segment for the refinement stage.
Only vertices in regions of the mesh with a high approximation
error are divided into mesh segments.
Letm′ indicate the number of mesh segments in the refinement

stage and let U′
k ′ be the new texture coordinates for segment k ′.

Similar to the notation for the coarse model, the refinement model
for segment k ′ can be expressed as δk ′ = g(f(p;θ rk ′);U

′
k ′) where

θ rk ′ are the parameters for the refinement model. The output δk ′
approximates the residual between the vertex positions in the mesh
and the output of the coarse model within mesh segment k ′. The
refinement approximation for vertices not contained in any mesh
segment in this stage is set to zero, and we denote this set asδm′+1 =
0. Let δ represent the combined set of outputs δk ′ . The refinement
models are trained using the same loss as the coarse model from
Equation 1 where the loss is evaluated as L(V,∆ + δ).
In our implementation, the refinement models produce defor-

mation maps with a higher resolution than those produced by the
coarse models. Alternatively, the entire approximation could be com-
puted by only applying these higher resolution refinement models
across the entire mesh and foregoing use of a coarse approximation.
However, applying the refinement model across the entire mesh
would have a much higher computational cost both because of a
global resolution increase and because the refinement model uses a
deeper network.

3.3 Refinement Boundary Selection
To identify the vertex sets used for refinement, we estimate for
each vertex the minimum approximation error given the coarse
deformation map resolution and texture coordinates of each mesh
segment. Next, we perform clustering on the texture coordinates
with each vertex weighted by its estimated approximation error.
The vertices near each cluster become the mesh segments for the
refinement models while vertices far from cluster centroids are
omitted from the refinement step.

We estimate the minimum approximation error by first mapping
vertex positions to a deformation map through the texture coordi-
nates and then sampling the deformation map at the coordinates
to generate vertex positions. The map is computed through poly-
harmonic interpolation with a linear kernel by interpolating values
at pixel coordinates from the texture coordinates. Vertex positions
are computed from the deformation maps through bilinear inter-
polation. Let vi be the original vertex position, and let ṽi be the
sampled vertex position from the deformation map. We estimate the

R,t

Rest	Pose

Deformed	Pose

Rigid
Transformation

Fig. 4. Illustration of the rigid components. The blue triangle represents
a rigid mesh segment identified by Equation 3. The black line represents
a nonlinearly deformed mesh segment, and the dots on the line represent
vertices on the surface. The red dots represent the set of vertices identified
by Equation 4 that best match the rigid transformation of the blue triangle
across a large set of examples. Given the rest pose and the positions of the
vertices on the nonlinear segment in a deformed pose, the transformation
R, t is computed from the red vertices. The transformation is then applied
to the blue triangle to compute its position in the deformed pose.

approximation error over a set of n samples Vi = {v1i , v
2
i , ..., v

n
i) as

ei =
1
n

n∑
j=1

vji − ṽji

2
2
. (2)

We then runk-means clustering on the texture coordinates with each
vertex weighted by its corresponding approximation error ei . The
number of clusters is determined by the elbow method. Each vertex
is assigned to the nearest cluster centroid up to a user-specified
distance. In our experiments, we assigned vertices within a square
with a length of 1/4 of the width of the original texture coordinate
space and centered on the cluster means. This approach worked
well for the characters we tested. As with the coarse approximation,
we compute the set of rig parameters that can deform any vertex
contained in these new mesh segments and provide each refinement
model with only those input parameters.

3.4 Rigid Components
In character faces there could be sections of the mesh that move
rigidly, such as teeth. In the case of characters that we tested, each
tooth was modeled as a separate segment. Because the deformation
of each tooth in the rig could be expressed as a rotation and transla-
tion, approximating the linear transformation with a CNNmodel for
each tooth would produce unnecessary computation. Instead, we
estimate the rigid movement by computing a linear transformation
from nearby vertices in the approximated mesh as illustrated in
Figure 4. Each rigid mesh segment is assigned to a subset of vertices
approximated by the CNN models. The motions of these rigid seg-
ments are then estimated by solving for the rigid transformation
that best explains the movement of the corresponding subset of
vertices from the CNN approximation. The rigid transformations
are computed after the coarse and refinement approximations have
been evaluated because the computation relies on the results of the
approximation.
To identify the rigidly deformed segments of the mesh, we con-

sider all k mesh segments that are provided by the author of the
facial rig. Next, we collect a set of n example mesh deformations

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

94:6 • Bailey et al.

V = {V1,V2, ...,Vn }. Given the mesh in a rest pose V0, we compute
the approximation error of rigidly transforming vertex positions V0

k
to Vik as

eik = min
tik ,R

i
k

V0
kR

i
k + t

i
k − Vik

2
F s.t. Rik ∈ SO(3). (3)

This equation indicates the difference in vertex positions for mesh
segment k in sample i when applying a rigid rotation Rik and transla-
tion tik . We average the error across samples ek = 1

n
∑n
i=1 e

i
k . Rigidly

deformed mesh segments can then be identified where ek < τ . In
our experiments, we used τ = 0.3mm.
Let Vir be a rigidly deformed mesh segment (i.e. er < τ) for

sample i . Let Rir and tir be the minimizers of Equation 3. Let P
be the set of vertex indices in the mesh that are not contained in
any rigidly deformed segment. For each vertex j ∈ P, we compute
the approximation error under the transformation Rir , tir across all
samples i

ϵr , j =
1
n

n∑
i=1

v0jRir + tir − vij

2
2
. (4)

For the rigid mesh segment r , let V0
δ and Viδ be the set of vertices

with the c smallest approximation errors ϵr , j where |V 0
δ | = c . In

our experiments, we chose c = 10. Given the nonlinearly deformed
vertices of a mesh V′

P
, the vertex positions for rigid mesh segment

r can be approximated as V′
r = V0

rR′
δ + t

′
δ where R′

δ and t′δ are the
minimizers of Equation 3 for the vertex positions V′

δ .

3.5 Implementation Details
All of the models f(p;θk) and f(p;θ rk ′) for the coarse approximation
and the refinement stage are implemented as deep neural networks
with a series of dense layers followed by convolutional layers. Fig-
ure 3 shows the structure of both coarse and refinement networks.
The networks are trained across two stages. The parameters θk
corresponding with the coarse approximation are trained in the first
stage to minimize the loss L(V,∆) from Equation 1. These models
are trained with the Adam optimizer [Kingma and Ba 2014] using
the momentum parameters suggested by the authors and with a
batch size of 8. Optimization starts with the learning rate at 10−3.
After the model converges, the learning rate is reduced to 10−4.
After convergence again, we reduce the rate to 10−5 and run until
convergence once more. Once the parameters θk from the coarse
approximation are fully optimized, they are held constant while
the refinement model parameters θ rk ′ are optimized with the loss
L(V,∆ + δ). The same hyper-parameters and training schedule are
used for optimization of the refinement model.

When training the approximation models, we compute the rigid
mesh segments (Equation 3) and the sets of vertices assigned to
each rigid segment (Equation 4) using the original rig function. Dur-
ing model evaluation, the rigid transformations are computed after
the coarse and refinement models are evaluated. The approximated
vertex positions are used to compute the rotation matrices and trans-
lation vectors, which are then applied to the rigid mesh segments
to create the resulting approximated mesh deformation.

To train the facial approximation model, a large set of training
data is needed. The training data consist of pairs (p,V) of rig pa-
rameters p and the vertex positions of the deformed mesh output
by the rig function V = r(p). To generate the training data, we aug-
ment existing animation with multiplicative noise and apply data
balancing to prevent common poses found in the animation data
from being over-represented in the training data.
Let A be the set of poses from the training animation, and let

m be the number of rig parameters in each pose. We construct the
training set as

T = {u ⊙ p | u ∼ U (0.25, 3.0)m, p ∼ A} (5)

where u ∈ Rm is a vector of random values with each compo-
nent drawn uniformly at random in the range [0.25, 3.0] and p is
drawn uniformly at random from the set of poses A. The opera-
tion ⊙ denotes component-wise multiplication of vectors. In our
experiments, we generate |T | = 50,000 samples for our training set.
Figure 5 shows example poses from the training data T .

Given the training set, we next balance the data. The training data
is generated from existing animation, and certain expressions, such
as a neutral expression, might occur more frequently than other
poses in the data. A model trained with this dataset would overfit to
frequently occurring expressions and would perform poorly when
approximating other types of expressions. Taking inspiration from
Feng et al. [2017], we sort the training examples into bins and draw
random samples by picking a bin uniformly at random and then
picking a sample within the bin uniformly at random.
To divide the data into bins, we first manually label a small set

of landmark vertices around key facial features such as the mouth,
eyes, and nose. In our experiments, we manually identified roughly
20-30 landmark points for each character. For each pose pi ∈ T , we
gather the positions of the landmark vertices Vil in the deformed
mesh. We then use PCA to project the set of landmark positions
{V1

l ,V
2
l , ...,V

|T |

l } onto a one dimensional space. This one dimen-
sional space is segmented into intervals of equal length along the
range of the projected data. The samples are then sorted into bins
according to the interval in which they lie. When drawing samples
for training, a bin is selected uniformly at random, and from that
bin, a sample is selected uniformly at random. In our experiments,
we divided the data into 16 bins.

4 INVERSE KINEMATICS
Facial character rigs for production use are typically constructed in
such a manner that computing the gradient of the vertex positions
with respect to the rig parameters ∂V/∂p would be difficult and
extremely slow. Using the approximation model that we propose, es-
timating the gradient becomes possible and is trivial with automatic
differentiation, which is a common feature in deep learning libraries.
One useful application of this gradient is inverse kinematics where
rig parameters are estimated to best deform the mesh in order to
match user-specified control point positions. Common solutions to
inverse kinematics formulate it as an iterative optimization prob-
lem [Aristidou et al. 2018]. These types of solutions would require
multiple gradient evaluations before converging on the optimal rig
parameters. Although the approximation model can be used to es-
timate ∂V/∂p, computing the gradient multiple times through our

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

Fast and Deep Facial Deformations • 94:7

Fig. 5. Example poses from the training data.

approximation model for an iterative optimization method requires
too much computation to run in real-time. Instead, we propose a
feed-forward neural network that takes the IK control points as input
and outputs the corresponding rig parameters. During training, the
network utilizes the approximation gradient, but does not require
∂V/∂p when evaluated on new inputs. As a result, the feed-forward
network can compute the desired rig parameters in real-time.

4.1 Model Details
Let C be the set of indices of vertices corresponding to IK control
points, and let rC(p) : Rm → R |C |×3 be the rig function that maps
the rig parameters p to the subset of vertices VC . Then the inverse
kinematics problem can be expressed as

p′ = argmin
p

rC(p) − VC

2
F

(6)

where VC are the target control points provided by the user. Due to
the assumption that the rig function r is not differentiable, we re-
place it with the approximation, denoted as r̃. Furthermore, instead
of solving the minimization problem with an iterative algorithm, we
introduce a feed-forward network fIK : R |C |×3 → Rm to approxi-
mate the minimization problem through a fixed-length computation
such that

fIK (VC ;θIK) = argmin
p

̃rC(p) − VC

2
F

(7)

where θIK are the network parameters that require training. The
model is trained on a specific set of control points and vertices VC ,
and a new network would need to be trained for any different set
of vertices.
The loss function used to train the model contains both a point-

matching component to ensure that the deformed mesh closely
matches the control points as well as a regularization component to
avoid large rig parameters that would create unnatural poses. The
loss is expressed as

L(VC) = Lpoint (VC) + λr eдLr eд(VC) (8)

where λr eд ∈ R is a user-defined regularization weight. The point-
matching loss computes the distance between the points generated
by the estimated pose and the corresponding control points

Lpoint (VC) =
1
|C|

∑
i ∈C

̃ri (fIK (VC ;θIK)) − vi

1
. (9)

The regularization term penalizes large parameter values as

Lr eд(VC) =

(fIK (VC ;θIK) − p0) ⊙ s

1

(10)

where p0 defines the neutral expression of the character and s ∈

Rm defines individual scaling values for each rig parameter. For
rig parameter i , the scale is given by si = 1/(pi ,max − pi ,min)

where pi ,max and pi ,min are the maximum and minimum values
for rig parameter i in the animation dataA. Scaling each parameter
separately ensures that regularization is applied equally to each
parameter regardless of the difference in their ranges of values.
Furthermore, we use the L1 regularization loss to encourage sparsity
in the estimated pose p.

An ideal IK approximation model fIK would avoid learning incor-
rect correlations between certain rig parameters and control points.
For example, if a user were to adjust a control point on the left eye
of a character, the approximation model should avoid changing rig
parameters related to the mouth. We guarantee this property by
designing the IK approximation model as a combination of multiple
networks. The control points are divided into separate sets based
on the regions of the face. For example, all of the points on the right
eye of the character define one subset, and all of the points on the
mouth define a separate subset. In our experiments, the points are
divided manually.
Let the control points be divided into k subsets, and let Cj de-

note subset j. In total, the IK approximation model consists of k
separate feed-forward networks. The input to model j is the subset
of control points VCj , and the output is the set of rig parameters
that can deform any of the vertices corresponding to the control
points. Rig parameters can be estimated by multiple models. In this
case, the final estimated value is the average of the outputs. More
sophisticated methods could be used to compute the final value of
rig parameters predicted by multiple networks. However, averaging
the values worked well with our rigs. For the character faces, only a
small fraction of the rig parameters are shared between IK models.
Of the shared parameters, almost all of them control large-scale
deformations of the face such as squash and stretch of the entire
head. Because these controls drive large deformations across all
regions of the mesh, IK models trained on control points for small
portions of the mesh will generally agree on parameter values for
these types of global deformations. Thus, we can achieve reasonable
results by simply averaging these parameters.

4.2 Implementation Details
Each network of the IK approximation model consists of three dense
layers with 256 nodes in the first two layers and |Rj | nodes in the
final layer where Rj is the set of rig parameters estimated by IK
model j. The leaky ReLU activation function is applied after the
first and second layers. No activation is applied to the output of

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

94:8 • Bailey et al.

Partial	Poses

D
ense	256

D
ense	256

O
utput	Pose

D
ense	256

D
ense	256

O
utput	Pose

D
ense	256

D
ense	256

O
utput	Pose

+

Averaged	Pose

Control	Points

IK	Models

Fig. 6. Diagram of IK model. Control points are divided into disjoint subsets and provided to separate dense neural networks. Each network outputs a subset
of the pose. The valid values from the outputs are averaged together to produce the final averaged rig parameter pose.

the final layer so that the network can output any value for the
rig parameters. A diagram of the network is shown in Figure 6.
Similar to the facial approximation model, the IK model is optimized
with Adam using the same training schedule and balanced dataset
described in Section 3.5.
As described, the IK model is trained using control points from

deformed meshes computed through the rig function. Thus, the
training data only contains examples of control points that can
be matched exactly with the appropriate rig parameters. However,
when evaluating the IK model, a user might configure the control
points in a way such that rig cannot precisely match the points. To
account for this use case, we add noise to the control points during
training. Given a training sample VC , a new sample is computed
as V′

C = VC + U(−δ , δ) |C |×3 for some user-defined δ > 0. This
new data point is created by adding uniformly random noise to
each control point’s position. In our experiments, we found that
δ = 4.5mm produces reasonable results. The IK model is trained
with this new dataV′

C , but all other aspects of model training remain
identical.

5 RESULTS
We built our approximation to work with film-quality facial rigs
that are used in computer-animated film production. The rigs are
deformed through a combination of a free-form shaping system and
a curve-based pose interpolation system. These deformers are lay-
ered for coarse to fine control of the mesh to facilitate art-directable
facial rigging of the character [Pohle et al. 2015]. The rigs are imple-
mented as node-based computational graphs with more than 10,000
nodes used to compute facial deformations. The nodes implement
a wide variety of functions such as basic arithmetic operators and
spline interpolation. The rig system also supports custom-written
nodes that can execute arbitrary code.

We demonstrate our method using four example facial rigs. Three
of these rigs are the proprietary facial rigs used in the feature film
How to Train Your Dragon: The Hidden World for the characters
Hiccup, Valka, and Toothless. The fourth example is the facial rig
from the publicly available open-source character, Ray, published

by the CGTarian Animation and VFX Online School [Besedin et al.
2018].

We compare our approximation models against linear blend skin-
ning (LBS) approximations and a dense feed-forward version of
our approximation models. We observe that our method preserves
high-frequency details, which are lost in the LBS approximations,
and it is more accurate than the dense models for three out of four
character rigs. Furthermore, unlike the LBS approximations, our
model preserves the mapping from rig parameters to the deformed
mesh, which allows our method to approximate novel animations
without access to the original rig function.

Table 1 shows statistics of each model trained on these charac-
ters. The models do not approximate the characters’ hair nor their
eyeballs. However, the models do approximate the interior of the
mouth as well as the teeth. Figure 7 visualizes the mesh segments
for the facial models of Hiccup, Valka, and Toothless, and Figure 8
shows the mesh segments used during the refinement stage of the
approximation.
In our results, the dense model runs faster than our approxima-

tion model, and in one case is more accurate than our model when
approximating artist-created animations. However, the dense ap-
proximation’s faster speed does come at the cost of more model
parameters, which translates to higher memory storage costs as
seen in Table 1. When the dense model fails, there are visible and
undesirable artifacts in the deformed mesh as seen in the facial
meshes of Hiccup and Valka in Figure 10. These artifacts appear as
high-frequency noise on the surface of the mesh and are caused by
the dense approximation modeling each component of each vertex
as an independent output. Our approximation, on the other hand,
models local neighborhoods in the mesh through the use of CNNs,
and inaccuracies in the approximation are less likely to manifest as
high-frequency noise as in the dense approximation. Furthermore,
our model is more accurate than the dense approximation on poses
generated through inverse kinematics for all characters.

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

Fast and Deep Facial Deformations • 94:9

Table 1. Approximation model statistics for each character rig.

Hiccup Valka Toothless Ray
Vertices 12,510 12,828 14,080 4,922

Rig Parameters 258 265 286 99
Coarse 10 9 18 6Segments

Refinement 4 3 4 3Segments
Rigid Segments 26 24 110 2

Model Size 8.66 MB 7.39 MB 12.97 MB 5.08 MB
Dense Size 25.96 MB 27.32 MB 31.66 MB 24.19 MB

(a) Hiccup (b) Valka (c) Toothless

Fig. 7. Visualization of the mesh segments of the three characters. Each
mesh segment is represented as a continuous region of the same color.

(a) Hiccup (b) Valka (c) Toothless

Fig. 8. Visualization of the mesh segments used for the refinement stage of
the approximation model. Gray regions of the mesh indicate segments that
are unused in the refinement model.

5.1 Comparison
We compare the accuracy of our approximation models to a LBS
model and a dense feed-forward networkwith fully connected layers
instead of convolutional layers. We estimate the LBS weights and
bone transformations using the method of Le and Deng [2012]. The
dense model is trained to approximate vertex offsets, and we train a
separate network for each mesh segment. Each model is comprised
of two hidden layers each of 256 nodes, and the final output layer is

the offsets for each vertex in the mesh segment. Because the dense
network is not constrained by deformation map resolution, we do
not train an additional refinement model, but we do deform the
rigid segments using the same method as our CNN approximation.
The dense model most closely resembles the method described by
Bailey et al. [2018]. The primary difference is that the facial mesh is
not linearly deformed by a set of bones before applying the dense
neural network.
For each character, we collect all available animation for the

rig and randomly split the data 90%/10% into training and test
data. We generate training data using only poses from the training
set according to Equation 5. In the case of Ray’s rig, we do not
have access to existing facial animation. Instead, we generate the
training and test sets by sampling the rig parameters in each pose
independently from a uniform distribution covering a user-specified
range of values for each parameter. This random sampling method
does not work when training the approximation models for the
other character rigs due to a higher level of complexity in their
mesh deformations. To train our approximationmodels as well as the
dense models, we generate 50,000 samples for each character. For the
LBS models, we fit 16, 24, and 32 bones to the mesh and allow each
vertex to have 8 non-zero weights. In addition, we generate 1,000
samples in order to estimate the vertex weights. We utilize fewer
training examples due to memory and computational constraints.
The test sets for Hiccup, Valka, and Toothless are constructed

by taking all unique poses from the test data that were unused
for training. We measure both the vertex position error and the
face normal error in Table 2. The vertex error is the mean distance
between the approximated and target vertex positions across the test
set. The face normal error is the angle between the approximated
and target face normals in the mesh. Specifically,

Enormal =
1
f

f∑
i=1

arccos (ni · n′i) (11)

where ni is the normal of face i in the ground truth mesh, and n′i
is the normal of face i in the approximated mesh with a total of f
faces.

From the results, we see that most approximations achieve submil-
limeter accuracy on average. However, the average vertex position
error is not a good indicator for the accuracy of fine-scale details
in the approximations. Figure 1 and Figure 9 show approximated
deformations for a poses of Toothless and Hiccup containing wrin-
kles. As seen in Table 2, the refined approximation produces the
smallest normal error for Hiccup, Valka, and Ray, but the dense
model produces the smallest error for Toothless. This smaller error
indicates that both the refined approximation and the dense approx-
imation can reproduce fine-scale details in the deformed mesh when
compared to our coarse approximation and LBS. Figure 10 shows
side-by-side comparisons with a visualization of the normal error.
See the supplementary video for more results. The trained network
for Ray, along with other supporting files needed for benchmarking
and comparison, are available as supplemental materials 1.

1http://graphics.berkeley.edu/papers/Bailey-FDF-2020-07

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

http://graphics.berkeley.edu/papers/Bailey-FDF-2020-07

94:10 • Bailey et al.

Table 2. Average vertex position error measured in mm and average normal
angle error measured in degrees.

Hiccup Valka Toothless Ray
Distance Error

Coarse 0.36 0.43 2.01 1.00
Refined 0.27 0.37 1.81 0.40
Dense 0.37 0.98 1.55 5.00

LBS: 16 Bones 0.49 0.33 4.36 0.64
LBS: 24 Bones 0.35 0.25 2.77 0.46
LBS: 32 Bones 0.24 0.21 2.35 0.44

Normal Angle Error
Coarse 1.6 1.7 3.1 3.8
Refined 0.9 1.1 2.4 1.5
Dense 1.9 5.5 1.9 8.9

LBS: 16 Bones 2.0 1.9 5.2 4.2
LBS: 24 Bones 1.9 1.8 4.3 3.7
LBS: 32 Bones 1.6 1.6 4.5 4.1

(a) Ground Truth (b) Refined Approximation

(c) Coarse Approximation (d) LBS Approximation

Fig. 9. Comparison of forehead wrinkles on Hiccup’s mesh using our ap-
proximation and LBS.

5.2 Timing
We implement our approximation models in Python with Tensor-
Flow.We evaluate their execution times on both a high-end machine
and a consumer-quality laptop using both the CPU and the GPU.
For the high-end machine, we use an Intel Xeon E5-2697 v3 pro-
cessor with 28 threads running at 2.60 GHz along with an NVIDIA
Quadro K5200 GPU. On the laptop, we use an Intel Core i7-7700HQ
processor with 8 threads running at 2.80 GHz along with an NVIDIA
GeForce GTX 1060. The rotation for the rigid segments is computed
by minimizing Equation 3 with the SVD. When evaluating the full
approximation with the GPU, we solve this minimization problem
on the CPU due to TensorFlow’s slow implementation of the SVD

Table 3. Average evaluation time in milliseconds on both the high-end
machine and the consumer-quality machine. The coarse approximation is
timed by evaluating the coarse model and the rigid deformations. The full
approximation is timed by evaluating the coarse model, the refinement
model, and the rigid deformations. Where indicated, the neural network is
evaluated on the GPU, but the rigid components are always evaluated on
the CPU.

Hiccup Valka Toothless
Original Rig

H
ig
h-
en
d

75 66 30
Coarse w/ GPU 6.4 6.0 10.4

Full w/ GPU 8.7 7.5 12.6
Dense w/ GPU 2.6 2.6 4.2

Coarse 2.9 2.7 4.4
Full 4.2 3.8 5.6

Dense 2.1 2.2 2.9
Coarse w/ GPU

Co
ns
um

er

5.8 3.2 7.3
Full w/ GPU 4.3 4.5 9.1

Dense w/ GPU 1.8 1.7 7.3
Coarse 6.9 2.7 5.7

Full 3.5 5.2 9.0
Dense 3.4 2.5 3.35

on the GPU. Model training time consisted of 2-4 hours spent gen-
erating training data through the original rig evaluation engine
followed by 2-3 hours of training the coarse approximation model
and 2-3 hours for the refined approximation model.

We compare the timing of our approximation against the original
rig evaluation software for Hiccup, Valka, and Toothless. These
three character rigs are designed for Libee [Watt et al. 2012], a multi-
threaded rig evaluation engine. Character artists optimized these
rigs to run as fast as possible on the engine. Unlike our method,
Libee can only evaluate character rigs on the CPU. Table 3 shows
the evaluation times using Libee and our method running both on
the CPU and the GPU. We time our models by taking the average
execution time across 1,000 evaluations on single poses.
From these results, we observe that our approximation models

runs from 5 to 17 times faster than the original rig evaluation engine.
In the case of the high-end machine, the approximation runs slower
on the GPU because the model is evaluated on a single pose and
because the convolutions operate on feature maps with low reso-
lution. Thus, the GPU is underutilized in this case, which leads to
slower performance. Furthermore, we find that the GeForce GPU on
the consumer-quality machine evaluates the approximation models
faster than the Quadro GPU on the high-end desktop. This difference
can be attributed to the slower clock speed of the Quadro compared
with the GeForce GPU.

5.3 Applications
Our approximation method provides a differentiable model that
maps rig parameters to the deformed mesh, which can be used for
IK applications. We demonstrate the uses of our approximation
through an interactive posing application and a facial landmark-
based performance capture system.

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

Fast and Deep Facial Deformations • 94:11

(a) Ground Truth (b) Coarse (c) Refined (d) Dense (e) LBS

Fig. 10. Visual difference between the ground truth mesh evaluated through the original rig function and the rig approximation methods. The heatmap on the
right half of each approximation visualizes the angle between the normal vector on the approximation and the corresponding normal on the ground truth
mesh. Smaller angles are better.

5.3.1 Character Posing. We develop a real-time posing application
in which the user manipulates a sparse set of control points, and our
IK model computes rig parameters that deform the mesh to match
the control points. The user drags the points across the screen, and
the mesh is updated interactively. The control points are provided to
the system as 2D image coordinates. We train the IK model to match
the points by projecting the mesh onto the image plane and express
the point loss term in Equation 9 in terms of distance in image
coordinates. We project the mesh onto the image plane through an
orthographic projection with the camera pointing along the Z axis.
Thus, the distance in image coordinates can be computed by only
the X and Y coordinates of the vertex positions.

The IK model is trained on meshes generated from the same aug-
mented dataset used to train the approximation models. Excluding
the time taken to generate the meshes from the original rig function,
training takes 1-2 hours.

We compare our approximation method with the dense neural
network approach. IK models are trained using both methods as
the rig approximation r̃(p) from Equation 7. In our experiments, the
IK models trained with gradients from the dense model for Hiccup,
Valka, and Ray produce poses for which the dense approximation
generates significantly inaccurate deformations with blatant visual
artifacts. For these three characters, we instead use poses generated
from the IK model trained using gradients from our approximation
method. In the case of Toothless’s rig, we evaluate the dense model
with poses generated from an IK model trained with gradients from
the dense approximation. To evaluate the models, we collect 25
user-generated control point configurations. There is no guarantee
that these control point configurations can be matched exactly by
the original rig. Next, the IK model computes rig parameters for the
control points. Finally, a mesh is generated using the approximation
method, and a ground truth mesh is generated using the original
rig function evaluated on the same rig parameters. We measure the

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

94:12 • Bailey et al.

Table 4. Posing errors measured in mm and degrees. For Toothless, the IK
models are trained using gradients from the corresponding approximation.
For Hiccup, Valka, and Ray, the IK model is trained with gradients from our
method and generates rig parameters for both our approach and the dense
method.

Hiccup Valka Toothless Ray
Distance Error

CNN (ours) 0.94 0.70 5.49 0.58
Dense 1.92 2.19 11.19 4.19

Normal Angle Error
CNN (ours) 2.8 1.7 3.0 1.5

Dense 5.6 8.9 4.2 8.5

per-vertex distance error and the per-face normal error between the
approximated and ground truth meshes. For Toothless, the approx-
imation model is fed poses generated from the IK model trained
on its gradients. For Hiccup, Valka, and Ray, both our model and
the dense model are fed poses from the IK model trained on gradi-
ents from our method. As seen in Table 4, our method more closely
matches the ground truth mesh evaluated on rig parameters output
by the IK model. Figure 11 shows a side-by-side comparison of the
ground truth mesh and the approximated deformation for several
example control point configurations.
The larger difference in accuracy between our approximation

and the dense approximation for Hiccup, Valka, and Toothless can
be explained by the types of poses output by the IK model. The IK
model is trained in an unsupervised setting, and the distribution of
poses output by the model does not exactly match the distribution
of poses from the training data. Thus, some poses output by the IK
model are dissimilar from the original training data. Higher accuracy
on these poses suggests that our approximation model generalizes
to new poses better than the dense model. The results from Ray
further support this conclusion. Both the CNN and dense models for
Ray are trained on poses sampled uniformly at random. Any pose
output by the IK model will lie somewhere within this distribution.
As seen in these results, the average approximation error for both
the CNN and the dense model for Ray are similar when evaluated
on a uniformly random set of poses (Table 2) and on the set of poses
output by the IK model (Table 4).

5.3.2 Facial Performance Capture. Real-time monocular facial per-
formance capture systems rely on a differentiable rig to map a video
recording to an animation sequence. Zollhöfer et al. [2018] provide a
survey of current state of the art methods in monocular facial track-
ing. Because the physical appearance of an actor will not match the
appearance of our animated characters, our system animates the
character by tracking a sparse set of facial landmark points. To track
the facial landmarks on an actor, we use our own implementation of
the method described in [Feng et al. 2017], and we train the model
on the same dataset described by the authors. In our facial tracking
system, we use 54 out of the 68 landmark points from the dataset.
We manually identify the corresponding points on the facial model.

To animate the mesh, we track the movement of the detected
landmarks in the recording and use the IK model to estimate the

rig parameters required to match the new landmark configuration.
Because the facial proportions of the actor might differ from those of
the animated character, we track the difference between the actor’s
expression and the actor’s neutral pose. This difference is then
applied to the control points for the IK model. Specifically, let l0 be
the detected landmark points on an image of the actor in a neutral
expression and let l be the coordinates of the detected landmarks in
the current expression of the actor. The control points c given to the
IK model are then computed as c = c0+ l− l0 where c0 is the control
point positions of the mesh in the neutral expression. Figure 12
shows a frame from a recording and the resulting deformed mesh
from the input.

6 DISCUSSION
Our method provides a fast and accurate approximation of film-
quality facial rigs. We have shown that our approximation can
preserve details of fine-grain mesh deformations where bone-based
approximations are unable. In addition, our approach provides a
differentiable rig approximation, which allows for a wide range of
potential new applications for the character rig. As examples, we in-
troduce a real-time IK-based posingmethod as well as a performance
facial capture system built on top of the IK solver. Additionally, once
the model is trained, our method no longer requires the original
rig function to evaluate mesh deformations. Because the approxi-
mations can be implemented with open-source machine learning
libraries, the models can be easily distributed and deployed on many
different systems without requiring the complex or proprietary
software that was initially used to build the facial rig. Thus, our
approximation model provides a common format in which facial
rigs can be shared without a dependency on the original rigging
software. Furthermore, the approximation model parameters can be
viewed as a form of rig obfuscation such that the underlying rigging
techniques used to create the character are hidden when the model
is shared.

Because our method is built upon convolutional layers the model
is not restricted to a single mesh topology. The approximation model
trained on a certain mesh can deform a novel mesh not seen during
training. As long as the texture coordinates of the facial features
in the new mesh align with the texture coordinates of the original,
the approximation rig can be transferred to the new facial mesh. In
this case, the approximation models output the deformation maps
using the same set of input rig parameters. Vertex offsets for the
new mesh are computed by sampling deformation maps at new
texture coordinates corresponding with the new mesh. Figure 13
shows an example of transferring one mesh segment of the coarse
approximation model onto a new mesh with a different topology. In
this example, the texture coordinates are manually aligned to those
of the original mesh.

The approximation method outputs vertex offsets in a world coor-
dinate system. As a result, the deformations applied to a new mesh
might appear undesirable if the facial proportions of the mesh differ
significantly from the original model. A different parameterization
of the offsets output by the approximationmodel could help alleviate
this issue and allow our method to transfer the approximation from
one rig to a facial mesh with significantly different proportions.

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

Fast and Deep Facial Deformations • 94:13

Fig. 11. Comparison of meshes deformed by rig parameters computed through the IK model. The red dots represent the control points provided to the IK
model.

(a) Input frame (b) Target mesh

Fig. 12. Example of our facial performance capture method. The facial
landmarks are detected on the input image. The landmark information
is passed to the IK model, which computes rig parameter values. The rig
parameters are then passed to our approximation model to produce the
deformed target mesh.

In our examples, vertex normals are computed separately, and are
not considered as part of the approximation model. However, in cer-
tain real-time applications, recomputing normals from a deformed
mesh is avoided to save computational time. Although we did not
experiment with approximating vertex normals in our model, the
method could easily be extended to approximate normals as well.
Instead of outputting 3 channels in the deformation maps, the net-
work could output additional channels for the normal directions,
and an additional loss term could be included to train the model to

output accurate normal vectors. Due to the small resolution of the
intermediary feature maps, this approach would only be appropriate
for approximating vertex or face normals. Normal maps or other
high-resolution maps such as ambient occlusion maps would need
to be created using other means.

In our implementation, we used the texture coordinates provided
with each character rig to interpolate from deformation maps to
vertex offsets. Although these coordinates work well for mapping
textures to the mesh surface, they might not be well-suited for our
method. For example, the texture coordinates for the upper lip and
lower lip of a character’s mouth could be near each other. Vertices on
the lower lip can move far away from the upper lip when the mouth
opens. If the texture coordinates are close enough together, then
vertices on both lips might lie on the same pixel in the deformation
map. If this were the case, then visually the lips would appear stuck
together when the mouth opens, which would be an inaccurate
deformation. To avoid these types of issues, new deformation map
coordinates could be generated specifically for this approximation
task rather than relying on pre-existing texture coordinates.

ACKNOWLEDGMENTS
We would like to thank Dave Otte for narrating the supplementary
video. We would also like to thank all of the DreamWorks character
artists, animators, and technical directors who helped create the
character rigs and animations that were used for this paper. Finally,
we would like to thank the anonymous reviewers for their helpful
feedback.

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

94:14 • Bailey et al.

Fig. 13. Rig approximation of Hiccup transferred to a new mesh with a
different topology. A single mesh segment from the coarse approximation is
applied to the new mesh on the right. The facial mesh on the right is from
the freely available Mathilda Rig developed by Leon Li-Aun Sooi and Xiong
Lin.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
Software available from tensorflow.org.

Andreas Aristidou, Joan Lasenby, Yiorgos Chrysanthou, and Ariel Shamir. 2018. Inverse
Kinematics Techniques in Computer Graphics: A Survey. Computer Graphics Forum
37 (09 2018), 35–58. https://doi.org/10.1111/cgf.13310

Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O’Brien. 2018. Fast and
Deep Deformation Approximations. ACM Trans. Graph. 37, 4, Article 119 (July 2018),
12 pages. https://doi.org/10.1145/3197517.3201300

Vadim Besedin, Jalil Sadool, Ludovic bouancheau, Shannon Thomas, Victor Vinyals,
Mike Safianoff, Joe Bowers, and David Stodolny. 2018. Ray Character Rig. CGTarian
Animation & VFX Online School. https://www.cgtarian.com/maya-character-rigs/
download-free-3d-character-ray.html

Bernd Bickel, Manuel Lang, Mario Botsch, Miguel A. Otaduy, and Markus Gross.
2008. Pose-space Animation and Transfer of Facial Details. In Proceedings of the
2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’08).
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 57–66. http:
//dl.acm.org/citation.cfm?id=1632592.1632602

Davide Boscaini, Jonathan Masci, Emanuele Rodoià, and Michael Bronstein. 2016.
Learning Shape Correspondence with Anisotropic Convolutional Neural Networks.
In Proceedings of the 30th International Conference on Neural Information Processing
Systems (NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 3197–3205.

Samuel R. Buss and Jin-Su Kim. 2005. Selectively Damped Least Squares for Inverse
Kinematics. Journal of Graphics Tools 10, 3 (2005), 37–49. https://doi.org/10.1080/
2151237X.2005.10129202 arXiv:https://doi.org/10.1080/2151237X.2005.10129202

Matthew Cong, Michael Bao, Jane L. E, Kiran S. Bhat, and Ronald Fedkiw. 2015. Fully
Automatic Generation of Anatomical Face Simulation Models. In Proceedings of the
14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ’15).
ACM, New York, NY, USA, 175–183. https://doi.org/10.1145/2786784.2786786

Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. 2008. Real-time Data Driven Deforma-
tion Using Kernel Canonical Correlation Analysis. ACM Trans. Graph. 27, 3, Article
91 (Aug. 2008), 9 pages. https://doi.org/10.1145/1360612.1360690

Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. 2018. Joint 3D Face
Reconstruction and Dense Alignment with Position Map Regression Network. CoRR
abs/1803.07835 (2018). arXiv:1803.07835 http://arxiv.org/abs/1803.07835

Zhen-Hua Feng, Josef Kittler, Muhammad Awais, Patrik Huber, and Xiaojun Wu. 2017.
Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural
Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(2017), 2235–2245.
Pablo Garrido, Michael Zollhöfer, Dan Casas, Levi Valgaerts, Kiran Varanasi, Patrick

Pérez, and Christian Theobalt. 2016. Reconstruction of Personalized 3D Face Rigs
from Monocular Video. ACM Trans. Graph. 35, 3, Article Article 28 (May 2016),
15 pages. https://doi.org/10.1145/2890493

Michael Girard and A. A. Maciejewski. 1985. Computational Modeling for the Computer
Animation of Legged Figures. In Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’85). ACM, New York, NY,
USA, 263–270. https://doi.org/10.1145/325334.325244

Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros,
and Markus Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4, Article 72
(July 2012), 8 pages. https://doi.org/10.1145/2185520.2185568

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, and Markus
Gross. 2013. Efficient Simulation of Secondary Motion in Rig-space. In Proceedings
of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
’13). ACM, New York, NY, USA, 165–171. https://doi.org/10.1145/2485895.2485918

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: A Network with an Edge. ACM Trans. Graph. 38, 4,
Article Article 90 (July 2019), 12 pages. https://doi.org/10.1145/3306346.3322959

Daniel Holden, Jun Saito, and Taku Komura. 2017. Learning Inverse Rig Mappings by
Nonlinear Regression. IEEE Transactions on Visualization and Computer Graphics
23, 3 (March 2017), 1167–1178. https://doi.org/10.1109/TVCG.2016.2628036

Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace:
Physics-based Face Modeling and Animation. ACM Trans. Graph. 36, 4, Article 153
(July 2017), 14 pages. https://doi.org/10.1145/3072959.3073664

Ning Jin, Yilin Zhu, Zhenglin Geng, and Ronald Fedkiw. 2018. A Pixel-Based Framework
for Data-Driven Clothing. CoRR abs/1812.01677 (2018). arXiv:1812.01677 http:
//arxiv.org/abs/1812.01677

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2007. Skinning with
Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics
and Games (I3D ’07). ACM, New York, NY, USA, 39–46. https://doi.org/10.1145/
1230100.1230107

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations (12 2014).

J. Kleiser. 1989. A fast, efficient, accurate way to represent the human face. In SIGGRAPH
’89 Course Notes 22: State of the Art in Facial Animation.

Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large
Deformation Character Skinning in Hardware. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’02). ACM, New
York, NY, USA, 153–159. https://doi.org/10.1145/545261.545286

Zorah Lähner, Daniel Cremers, and Tony Tung. 2018. DeepWrinkles: Accurate and
Realistic Clothing Modeling. CoRR abs/1808.03417 (2018). arXiv:1808.03417 http:
//arxiv.org/abs/1808.03417

Samuli Laine, Tero Karras, Timo Aila, Antti Herva, Shunsuke Saito, Ronald Yu, Hao
Li, and Jaakko Lehtinen. 2017. Production-Level Facial Performance Capture
Using Deep Convolutional Neural Networks. In Proceedings of the ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation (SCA ’17). Associa-
tion for Computing Machinery, New York, NY, USA, Article Article 10, 10 pages.
https://doi.org/10.1145/3099564.3099581

Binh Huy Le and Zhigang Deng. 2012. Smooth Skinning Decomposition with Rigid
Bones. ACM Trans. Graph. 31, 6, Article 199 (Nov. 2012), 10 pages. https://doi.org/
10.1145/2366145.2366218

Binh Huy Le and Zhigang Deng. 2014. Robust and Accurate Skeletal Rigging from
Mesh Sequences. ACM Trans. Graph. 33, 4, Article 84 (July 2014), 10 pages. https:
//doi.org/10.1145/2601097.2601161

J. P. Lewis and K. Anjyo. 2010. Direct Manipulation Blendshapes. IEEE Computer
Graphics and Applications 30, 4 (July 2010), 42–50. https://doi.org/10.1109/MCG.
2010.41

J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformation: A Unified
Approach to Shape Interpolation and Skeleton-driven Deformation. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
165–172. https://doi.org/10.1145/344779.344862

Hao Li, Thibaut Weise, and Mark Pauly. 2010. Example-based Facial Rigging. In ACM
SIGGRAPH 2010 Papers (SIGGRAPH ’10). ACM, New York, NY, USA, Article 32,
6 pages. https://doi.org/10.1145/1833349.1778769

Or Litany, Alexander M. Bronstein, Michael M. Bronstein, and Ameesh Makadia. 2017.
Deformable Shape Completion with Graph Convolutional Autoencoders. CoRR
abs/1712.00268 (2017). arXiv:1712.00268 http://arxiv.org/abs/1712.00268

N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. 1988. Joint-dependent Local
Deformations for Hand Animation and Object Grasping. In Proceedings on Graph-
ics Interface ’88. Canadian Information Processing Society, Toronto, Ont., Canada,
Canada, 26–33. http://dl.acm.org/citation.cfm?id=102313.102317

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.
2015. Geodesic Convolutional Neural Networks on Riemannian Manifolds. In
Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

https://www.tensorflow.org/
https://doi.org/10.1111/cgf.13310
https://doi.org/10.1145/3197517.3201300
https://www.cgtarian.com/maya-character-rigs/download-free-3d-character-ray.html
https://www.cgtarian.com/maya-character-rigs/download-free-3d-character-ray.html
http://dl.acm.org/citation.cfm?id=1632592.1632602
http://dl.acm.org/citation.cfm?id=1632592.1632602
https://doi.org/10.1080/2151237X.2005.10129202
https://doi.org/10.1080/2151237X.2005.10129202
http://arxiv.org/abs/https://doi.org/10.1080/2151237X.2005.10129202
https://doi.org/10.1145/2786784.2786786
https://doi.org/10.1145/1360612.1360690
http://arxiv.org/abs/1803.07835
http://arxiv.org/abs/1803.07835
https://doi.org/10.1145/2890493
https://doi.org/10.1145/325334.325244
https://doi.org/10.1145/2185520.2185568
https://doi.org/10.1145/2485895.2485918
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1109/TVCG.2016.2628036
https://doi.org/10.1145/3072959.3073664
http://arxiv.org/abs/1812.01677
http://arxiv.org/abs/1812.01677
http://arxiv.org/abs/1812.01677
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/545261.545286
http://arxiv.org/abs/1808.03417
http://arxiv.org/abs/1808.03417
http://arxiv.org/abs/1808.03417
https://doi.org/10.1145/3099564.3099581
https://doi.org/10.1145/2366145.2366218
https://doi.org/10.1145/2366145.2366218
https://doi.org/10.1145/2601097.2601161
https://doi.org/10.1145/2601097.2601161
https://doi.org/10.1109/MCG.2010.41
https://doi.org/10.1109/MCG.2010.41
https://doi.org/10.1145/344779.344862
https://doi.org/10.1145/1833349.1778769
http://arxiv.org/abs/1712.00268
http://arxiv.org/abs/1712.00268
http://dl.acm.org/citation.cfm?id=102313.102317

Fast and Deep Facial Deformations • 94:15

(ICCVW) (ICCVW ’15). IEEE Computer Society, USA, 832–840. https://doi.org/10.
1109/ICCVW.2015.112

Alex Mohr and Michael Gleicher. 2003. Building Efficient, Accurate Character Skins
from Examples. In ACM SIGGRAPH 2003 Papers (SIGGRAPH ’03). ACM, New York,
NY, USA, 562–568. https://doi.org/10.1145/1201775.882308

Tomohiko Mukai and Shigeru Kuriyama. 2005. Geostatistical Motion Interpolation. In
ACM SIGGRAPH 2005 Papers (SIGGRAPH ’05). ACM, New York, NY, USA, 1062–1070.
https://doi.org/10.1145/1186822.1073313

Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus Wacker, Marcus Magnor,
and Christian Theobalt. 2013. Sparse Localized Deformation Components. ACM
Trans. Graph. 32, 6, Article 179 (Nov. 2013), 10 pages. https://doi.org/10.1145/
2508363.2508417

Frederick I. Parke. 1972. Computer Generated Animation of Faces. In Proceedings of the
ACM Annual Conference - Volume 1 (ACM ’72). ACM, New York, NY, USA, 451–457.
https://doi.org/10.1145/800193.569955

Frederic Ira Parke. 1974. A Parametric Model for Human Faces. Ph.D. Dissertation.
AAI7508697.

Sven Pohle, Michael Hutchinson, Brent Watkins, Dick Walsh, Stephen Candell, Fred-
erick Nilsson, and Jason Reisig. 2015. DreamWorks Animation Facial Motion and
Deformation System. In Proceedings of the 2015 Symposium on Digital Production
(DigiPro ’15). Association for Computing Machinery, New York, NY, USA, 5–6.
https://doi.org/10.1145/2791261.2791262

Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. 2018. Generating
3D Faces Using Convolutional Mesh Autoencoders. In Computer Vision – ECCV
2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.).
Springer International Publishing, Cham, 725–741.

Charles F. Rose III, Peter-Pike J. Sloan, and Michael F. Cohen. 2001. Artist-
Directed Inverse-Kinematics Using Radial Basis Function Interpolation. Computer
Graphics Forum 20, 3 (2001), 239–250. https://doi.org/10.1111/1467-8659.00516
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00516

Jaewoo Seo, Geoffrey Irving, J.P. Lewis, and Junyong Noh. 2011. Compression and
Direct Manipulation of Complex Blendshape Models. ACM Trans. Graph. 30 (12

2011), 164. https://doi.org/10.1145/2070781.2024198
Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic Determination

of Facial Muscle Activations from Sparse Motion Capture Marker Data. In ACM
SIGGRAPH 2005 Papers (SIGGRAPH ’05). ACM, New York, NY, USA, 417–425. https:
//doi.org/10.1145/1186822.1073208

Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep Learning 3D Shape Surfaces Using
Geometry Images. In Computer Vision – ECCV 2016, Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling (Eds.). Springer International Publishing, Cham, 223–240.

Jean-Marc Thiery, Émilie Guy, Tamy Boubekeur, and Elmar Eisemann. 2016. Animated
Mesh Approximation With Sphere-Meshes. ACM Trans. Graph. 35, 3, Article 30
(May 2016), 13 pages. https://doi.org/10.1145/2898350

Xiaohuan Corina Wang and Cary Phillips. 2002. Multi-weight Enveloping: Least-
squares Approximation Techniques for Skin Animation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’02). ACM,
New York, NY, USA, 129–138. https://doi.org/10.1145/545261.545283

Martin Watt, Lawrence D. Cutler, Alex Powell, Brendan Duncan, Michael Hutchinson,
and Kevin Ochs. 2012. LibEE: A Multithreaded Dependency Graph for Character
Animation. In Proceedings of the Digital Production Symposium (DigiPro ’12). ACM,
New York, NY, USA, 59–66. https://doi.org/10.1145/2370919.2370930

Chris J. Welman. 1993. Inverse Kinematics and Geometric Constraints for Articulated
Figure Manipulation. Ph.D. Dissertation. Simon Fraser University.

Xian Xiao, John P. Lewis, Seah Hock Soon, Nickson Fong, and Tian Feng. 2006. A Powell
Optimization Approach for Example-Based Skinning in a Production Animation
Environment. Computer Animation and Social Agents (12 2006).

Li Zhang, Noah Snavely, Brian Curless, Brian Curless, and Steven M. Seitz. 2004. Space-
time Faces: High Resolution Capture for Modeling and Animation. ACM Trans.
Graph. 23, 3 (Aug. 2004), 548–558. https://doi.org/10.1145/1015706.1015759

Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo Beeler, Patrick
Pérez, Marc Stamminger, Matthias Nießner, and Christian Theobalt. 2018. State of
the Art on Monocular 3D Face Reconstruction, Tracking, and Applications. Comput.
Graph. Forum 37 (2018), 523–550.

ACM Trans. Graph., Vol. 39, No. 4, Article 94. Publication date: July 2020.

https://doi.org/10.1109/ICCVW.2015.112
https://doi.org/10.1109/ICCVW.2015.112
https://doi.org/10.1145/1201775.882308
https://doi.org/10.1145/1186822.1073313
https://doi.org/10.1145/2508363.2508417
https://doi.org/10.1145/2508363.2508417
https://doi.org/10.1145/800193.569955
https://doi.org/10.1145/2791261.2791262
https://doi.org/10.1111/1467-8659.00516
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00516
https://doi.org/10.1145/2070781.2024198
https://doi.org/10.1145/1186822.1073208
https://doi.org/10.1145/1186822.1073208
https://doi.org/10.1145/2898350
https://doi.org/10.1145/545261.545283
https://doi.org/10.1145/2370919.2370930
https://doi.org/10.1145/1015706.1015759

	Abstract
	1 Introduction
	2 Related Work
	3 Facial Approximation
	3.1 Coarse Model
	3.2 Refinement Model
	3.3 Refinement Boundary Selection
	3.4 Rigid Components
	3.5 Implementation Details

	4 Inverse Kinematics
	4.1 Model Details
	4.2 Implementation Details

	5 Results
	5.1 Comparison
	5.2 Timing
	5.3 Applications

	6 Discussion
	Acknowledgments
	References

