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Abstract

This paper describes a framework that allows a user to synthesize
human motion while retaining control of its qualitative properties.
The user paints a timeline with annotations — like walk, run or
jump — from a vocabulary which is freely chosen by the user.
The system then assembles frames from a motion database so that
the final motion performs the specified actions at specified times.
The motion can also be forced to pass through particular configura-
tions at particular times, and to go to a particular position and ori-
entation. Annotations can be painted positively (for example, must
run), negatively (for example, may not run backwards) or as a
don’t-care. The system uses a novel search method, based around
dynamic programming at several scales, to obtain a solution effi-
ciently so that authoring is interactive. Our results demonstrate that
the method can generate smooth, natural-looking motion.

The annotation vocabulary can be chosen to fit the application,
and allows specification of composite motions (run and jump si-
multaneously, for example). The process requires a collection of
motion data that has been annotated with the chosen vocabulary.
This paper also describes an effective tool, based around repeated
use of support vector machines, that allows a user to annotate a
large collection of motions quickly and easily so that they may be
used with the synthesis algorithm.

CR Categories:
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1 Introduction

The objective of our paper is to provide animators with intuitive
controls for synthesizing appealing motions. An ideal model for
this system is how a director guides actors and actresses. A sim-
ilar control can also be used on game characters which can main-
tain their goals and possible modifiers on how they will attain these
goals.

In this paper we present an algorithm that synthesizes motions
by allowing the user to specify what actions should occur during
the motion as well as specifying modifiers on the actions. These
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Figure 1: In this automatically synthesized motion, the figure is
constrained to be tripping, then running, then jumping while still
running.

actions and modifiers are represented as annotations that the user
paints on a timeline. For example, a motion can be described as
“running, picking up and walking while carrying”. The annotations
that we can use to describe such a motion are running, picking
up, walking and carrying. The user may also include nega-
tive annotations so that the algorithm is prohibited from generating
undesired types of actions. Additionally, the user may specify con-
straints that require the motion to pass through a particular pose or
to move to a particular position or orientation at a given time.

The motion is constructed by cutting pieces of motions from a
motion database and assembling them together. The database needs
to be annotated before the synthesis. This annotation process is
quite flexible: no restrictions on the type of annotation labels are
imposed. While annotating appears to be a difficult task, we have
produced an annotation process that is quite efficient and easy to
use. In our framework the user is required to annotate only a small
portion of the database. Our system uses Support Vector Machine
(SVM) classifiers to generalize the user annotations to the entire
database. The SVM can be interactively guided by the user to cor-
rect possible misclassifications. A novice user of our system can
annotate the 7 minutes of motion data we have in under an hour
using our procedure.

The synthesis algorithm is based on successive dynamic pro-
gramming optimizations from a representation of the database at
a coarse scale to a finer one. The optimization finds blocks of mo-
tions that can fit together in a motion sequence and at the same time
satisfy the annotations and other low level constraints. The synthe-
sis process is interactive. The user can obtain immediate results and
can change the desired motion properties on the fly.

2 Related Work

Recent years have seen a number of algorithms for motion synthe-
sis from motion data. These algorithms create novel motions by
cutting pieces from a motion database and reassembling them to

402



Computer Graphics Proceedings, Annual Conference Series, 2003

form a new motion. These algorithms [Arikan and Forsyth, 2002;
Lee et al., 2002; Li et al., 2002; Pullen and Bregler, 2002; Molina-
Tanco and Hilton, 2000] can synthesize motions that: follow a path,
go to a particular position/orientation, perform a particular activity
at a specified time or simulate certain characteristics in the video se-
quence of a real person. However, relatively limited direction of the
motion is possible. For example, there are many ways to follow a
specified path and a user may wish to specify how the character will
move along the path (e.g., run, walk) or what other actions to take
(e.g., wave) while following the path. Motion graphs [Kovar et al.,
2002a] attack this problem by confining their search to subgraphs
induced by the desired action. However, this method is ill suited if
the desired actions have short temporal span, such as “jumping” or
“catching” or if the actions are to be composed: “jump and catch
while running”.

Local search methods for motion synthesis have problems syn-
thesizing motions which require global planning. For example, to
be able to jump at a particular point in time, one may need to pre-
pare well in advance. Motion graphs do not allow such long term
motion planning. Although the method proposed in [Arikan and
Forsyth, 2002] looks for a solution to a global optimization prob-
lem, it does so by making local changes to the solution. These
local changes will break the synchronization that aligns the gener-
ated motion with the user’s annotations. As a result, a single local
mutation will almost invariably generate a poorer solution and will
be rejected by the algorithm.

[Blumberg and Galyean, 1995] produces controllers that con-
vert behavioral goals or explicit directions into motion. Designing
controllers that lead to a natural looking motion is quite difficult,
particularly for high level actions such as walking, jumping and
running. Possible strategies include imitation [Mataric, 2000] or
optimization [Grzeszczuk and Terzopoulos, 1995]. Scripting is an-
other alternative for control [Perlin and Goldberg, 1996], but often
has the disadvantage of providing too detailed control over the mo-
tion.

[Rose et al., 1998] construct a verb graph by hand where each
verb is represented as a linear combination of adverb motions.
However, applying this method to large databases with large num-
ber of verbs and adverbs poses problems. Interpolating different
executions of the same action can also lead to undesirable motions,
especially if the interpolated motions are not similar.

Physically based methods can be used to rectify problems that
are created by either transitioning [Rose et al., 1996] or interpolat-
ing between motions. Physically based methods can also synthesize
motions from scratch [Witkin and Kass, 1988; Liu and Popovic,
2002; Hodgins et al., 1995; Faloutsos et al., 2001], but quickly be-
come too complex for interesting human motions. We believe data
driven algorithms, including ours, will benefit from using physi-
cally based models, for example, to rectify discontinuities in the
synthesized motions.

Starting from an already captured or synthesized motion, differ-
ent algorithms can be used to fix feet - ground interactions [Kovar
et al., 2002b], retarget motion to a character with different body
proportions [Gleicher, 1998], introduce stylistic attributes such as
“happy” or “sad” [Brand and Hertzmann, 2000], or warp the motion
to satisfy positional constraints [Witkin and Popovic, 1995; Gle-
icher, 2001]. An interesting way of capturing motion from cartoons
has also been presented by [Bregler et al., 2002].

3 Synthesis

Our objective is to control a human figure. We would like to do this
by painting actions (such as stand, walk, run etc.) and modifiers
(such as reach, catch, carry etc.) on the timeline. The synthesis
algorithm should then create a motion that performs these actions

at the right times while having natural looking transitions between
actions so that the final motion looks human.

Given an annotated timeline specifying what kinds of motion
should occur at particular times, our method automatically assem-
bles subsequences from a motion database into a smooth motion
that matches the annotations. We will call the annotations that must
be satisfied annotation constraints. An example set of annotations
would be to run slowly for the first 200 frames then switch to walk-
ing for another 100 frames while waving the entire time. The main
focus of this paper is to synthesize such motions efficiently. The
user also expects the motion to be of a particular length (length
constraint) and to be continuous (continuity constraints). A mo-
tion is continuous if it looks natural at all cuts between motions.
We may still require the frame constraints and the position con-
straints of earlier work [Arikan and Forsyth, 2002; Kovar et al.,
2002a; Lee et al., 2002]. Recall that a frame constraint will ensure
that at a particular time the motion will pass through a particular
frame selected from the database. Position constraints ensure that
the motion ends at a particular position and orientation. The synthe-
sis process should choose frames from a motion database such that
the chosen frames, when put together, are continuous and match the
desired set of annotations as well as any possible frame and position
constraints.

It is natural to allow annotations to be composed, meaning that
there could be a very large set of possible annotations. In practice,
however, the database may not contain a continuous set of frames
that satisfies every possible combination of these annotations. Fur-
thermore, some annotations may be fundamentally incompatible
with each other. For example, one cannot expect to find a motion
that stands while running even though, individually, these two
are perfectly reasonable annotations. Another consideration is that
annotations can not exactly match the desired motions: we can not
find a continuous motion that runs for the first 100 frames and then
suddenly walks for the next 100. Thus in section 3.2, the problem
will be formulated as a combinatorial optimization which tries to
choose frames so that the motion is continuous and closely matches
to the annotations, and a Dynamic Programming (DP, e.g., [Bert-
sekas, 2000]) based solution will be introduced. However, since the
solution method will assume every motion in the motion database
has already been annotated, section 3.1 will first provide a descrip-
tion of our annotation process.

3.1 Annotating Motions

Annotations are used to describe motions. In order to accommo-
date a variety of motions, the annotations should be flexible. In
other words, the user should be able to have an arbitrary vocab-
ulary that is suited to the motions being annotated. The vocabu-
lary chosen for the annotations defines the level of control of the
synthesis: the user can annotate left foot on the ground
and right foot on the ground, but this does not provide
an intuitive control for the synthesis unless the user wants a par-
ticular foot to be on the ground at a particular time. Although the
framework we present in this paper handles such detailed annota-
tions equally well, we choose to focus on annotations that describe
the qualitative properties of motion.

The database of motions that we used for our examples consisted
of 7 minutes of American football motions. The vocabulary that we
chose to annotate this database consisted of: Run, Walk, Wave,
Jump, Turn Left, Turn Right, Catch, Reach, Carry,
Backwards, Crouch, Stand, and Pick up. Some of these an-
notations can co-occur: turn left while walking, or catch
while jumping and running. Any combination of annotations
is allowed, though some combinations may not be used in practice.
For example, we cannot conceive of a motion that should be anno-
tated with both stand and run.

403



ACM SIGGRAPH 2003, San Diego, CA, July, 27–31, 2003

Our annotation vocabulary reflects our database. A different
choice of vocabulary would be appropriate for different collections.
Furthermore, the annotations are not required to be canonical. Our
algorithm should be equally happy synthesizing dance sequences
(with annotation terms like plié) and character sketches (with an-
notation terms like happy or tired). We have verified that a
consistent set of annotations to describe a motion set can be picked
by asking people outside our research group to annotate the same
database. This implies the annotator does not have to be the same
as the animator.

Once a vocabulary is chosen, all the motions in the database
must be annotated. For example, if a motion runs for the first
100 frames of a motion and then switches to walking for the next
100, the first hundred frames must be annotated with running
and the last 100 must be annotated with walking. This process is
inherently ambiguous temporally: we can not find an exact frame
where we switch from running to walking. But since the synthesis
algorithm is formulated as an optimization, a rough set of annota-
tions proved adequate. Even so, annotating a large set of motions
by hand would be a difficult and tedious process. Ideally, we would
like to annotate only a few examples by hand and then let the sys-
tem generalize our annotations to the rest of the database. In order
to make the annotation process faster, we built a Support Vector
Machine (SVM) classifier.

Each annotation, when considered separately, partitions frames
that have been annotated into two groups: frames performing the
action (group 1) and frames that do not (group -1). Given a new
motion, its frames are classified into either group 1 or group -1 us-
ing an SVM. To make this classification, every frame needs to be
embedded in a suitable coordinate system. The coordinate vector
we choose for each frame is the joint positions for one second of
motion centered at the frame being classified. Since the motion is
sampled in time, each joint has a discrete 3D trajectory in space for
the second of motion centered at the frame. The embedding of a
frame is simply a vector of joint positions. In order to make sure
these 3D positions are consistent and comparable, they are repre-
sented in the torso coordinate system of the frame being classified.
In this coordinate system, the frame being classified is at the origin
and the up, left and forward directions are aligned with 3D coordi-
nate axes.

We can separate new frames into two groups quite easily, using
a radial basis function 〈 f1, f2〉 = exp− | f1− f2|

γ
as the kernel and by

choosing a γ (which controls the curvature of the decision bound-
ary) that achieves the best looking classification results. For each
annotation, we train a separate classifier using the motions that have
already been annotated. When a new motion is to be annotated,
we classify its frames using the SVM for each annotation label.
We then display the annotation results to the user who can make
corrections if necessary. The user verified data is then added to
the SVM training set and the classifier’s decision boundary is re-
optimized. It is our experience that after annotating 3-4 variants of
an annotation, the user rarely needs to correct the auto-annotation
results. This way the user simply verifies the automatic annotation
results and makes corrections only if necessary. This on-line learn-
ing method makes is possible to annotate large databases of motions
quite rapidly.

In our implementation, we used a public domain SVM library
(libsvm [Chang and Lin, 2000]). The out of margin cost for the
SVM is kept high to force a good fit within the capabilities of the
basis function approximation.

3.2 Optimization

Using the results of the previous section, we assume all the mo-
tions in the motion database have been previously annotated with a
fixed set of annotations. Let A( f ) represent the annotation vector

Figure 2: The user interface allows the user to see each available an-
notation label (bottom of the screen), and paint positive annotations
(green bars) and negative annotations (blue bars). The frames that
are not painted are interpreted as don’t care. The user can manip-
ulate geometric constraints directly using the green triangles and
place frame constraints on the timeline by choosing motion to be
performed (right of the screen).

for frame f in the motion database. If there are m different kinds of
annotations, A( f )[1 · · ·m]∈ {1,−1} where the k’th element of A( f )
is 1 if this frame has the k’th annotation (and -1 if it doesn’t). For
example, if the first annotation is running and the second annota-
tions is jumping, frames belonging to a running motion will have
the first item of their annotation vectors set to 1. For frames where
the figure is jumping in addition to running (i.e., a running jump),
the second item will also be 1.

The output motion is a sequence of frames chosen from the mo-
tion database such that when we put the chosen frames together to
form the motion, the subsequent frames are continuous and satisfy
the annotation constraints. If the frames in the database are repre-
sented as f1 · · · fT , we need to choose fσ1 · · · fσn where σi ∈ [1 · · ·T ]
is the frame to use as the i’th frame of the synthesized motion. Here
T represents the total number of frames of motion in the database
and n is the number of frames of motion to synthesize. The de-
sired motion is represented as a solution to the following objective
function:

min
σ1···σn

[
α

n

∑
i=1

D(i,A( fσi))+(1−α)
n−1

∑
i=1

C( fσi , fσi+1)

]
(1)

In this equation, functions D and C evaluate how well the frame’s
annotations match the desired set of annotations at a particular
frame and how well the subsequent frames match each other re-
spectively. The α parameter can be used to favor motions that are
more continuous or motions that match the annotation better.

D(i,A( f )) compares the annotations of frame f in the motion
database versus the desired set of annotations that we would like
to have at frame i of the motion to synthesize. We represent the
desired set of annotations for the frame in the vector Q(i) which is
defined the same as A( f ). Since both quantities are vectors of the
same length, one possibility is the squared difference. However,
this assumes that the user has marked the entire timeline with the
annotations that he/she wants. Most of the time though, we want
a particular subset of annotations to be performed at certain times
and we want a certain subset of annotations not to be performed
while not caring about the rest of the annotations. This suggests
an alternative form. For each annotation, we can say “yes, have
the annotation” (1), “no, do not have the annotation” (-1) or “we
do not care” (0). If that annotation should be on and the frame has
that annotation, we reward it by making its score better, whereas
if the annotation is to be off and if the frame has the annotation,
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Figure 3: The motion is constructed out of blocks of subsequent
frames from a motion database (see section 3.3). (a) 32 frame
blocks of motions are selected at random with stratification to be
the active set for each time slot that needs to be synthesized. (b)
Dynamic programming is used to choose an optimal sequence of
32 frame blocks. (c) The resulting motion is broken into 16 frame
blocks. (d) Other 16 frame blocks that are similar to the previous
result are used as the active set. (e) Dynamic programming is used
to find a finer solution. The search can be repeated this way until
we reach down to individual frame level. In practice, we stop at 8
frame blocks. (f) The final solution is passed through a local opti-
mizer that moves the block boundaries to achieve most continuous
motion

we make its score worse. Let Q(i) ∈ {−1,0,1} designate the user’s
annotation preferences and define:

D(i,A( f )) = −
m

∑
j=1

Q(i)[ j]×A( f )[ j] (2)

To be able to compute this function, we allow the user to mark
the timeline with annotations to be performed or annotations not
to be performed. Unmarked frames are interpreted as “don’t care”
(see figure 2). The smaller values of D indicate a better match to
the desired set of annotations, which is consistent with equation 1.

C( fi, f j) computes the goodness in terms of continuity of putting
frame f j after frame fi. This is essentially the distance between
frames fi+1 and f j as in [Arikan and Forsyth, 2002; Kovar et al.,
2002a; Lee et al., 2002]. Since keeping the distance between ev-
ery pair of frames in the database is not practical due to O(T 2)
storage cost, we compute feature vectors for each frame and take
the squared distance between the feature vectors for frames fi+1
and f j. The feature vector for a frame is the joint position, veloci-
ties and accelerations for every joint expressed in the torso coordi-
nate frame. Since the dimensionality of these vectors are likely to
be large (a 30 joint skeleton would contain 90 × 3 numbers), we
project the dimensionality down to 20 using principal component
analysis without much loss in the signal. If the feature vector for
frame f is F( f ), then C( fi, f j) = ||F( fi+1)−F( f j)||.

An important observation is that the objective function in equa-
tion 1 is composed of “local” terms1 that check the goodness of
a frame as a function of the immediate neighbors only. Thus, the

problem can be solved using DP by using the following cost-to-go
function:

J(i, f j) = min
σ

[
D(i,A( f j))+C( fσ , f j)+ J(i−1, fσ )

]
(3)

J(1, f j) = D(1,A( f j)) (4)

The computational cost of DP is O(n×T 2) (see figure 3). This
means DP can not be applied directly even for small databases. The
following section describes a hierarchical search algorithm that pro-
vides a close approximation while being practical.

3.3 Practical Algorithm

In this section, we describe an algorithm that synthesizes motions
by first creating a motion out of big blocks of frames. This initial
solution will capture the essential structure of the motion. We then
refine this motion by performing a search that operates on smaller
blocks. The idea of this refinement is to improve the look of the
motion while benefiting from the restriction in the search space pro-
vided by the structure of the coarse motion.

The crucial observation is that most of the time, annotations have
long temporal support: one usually does not run for just one frame.
Thus, it is natural to think in terms of blocks of frames. Thus, we
perform DP on sequences of 32 frame blocks (about half a second
long). This size is about the granularity of our annotations. The
total number of 32 frame blocks is still O(T ). If we look at all 32
frame blocks, many of them will be very similar to each other. For
example, if there are 10 running motions in the database, we will
have many copies of the same 32 frame blocks. In order to deal with
this issue, we cluster all 32 frame blocks and work on representative
blocks from each cluster.

In order to synthesize n frames of motion, we have d n
32 e time

slots. For each slot, a 32 frame motion sequence needs to be found.
In order to find these sequences, each slot should have an active
set of possible 32 frame sequences that can go in that block. Since
the computational cost of DP is linear in the number of slots and
quadratic in the number of sequences in each active set, we would
like to have a small number of relatively different sequences so that
the solution we get is close to the true global optimum if we had
used all 32 frame sequences in our active sets. To get such repre-
sentative sequences, we take all 32 frame sequences in the motion
database and cluster them into 100 clusters.

The number of clusters that we need is found experimentally.
100 clusters is small enough to make DP interactive and large
enough to have sufficient variety. The active set for each time slot
consists of 100 random sequences, drawn one from each cluster
(figure 3-a). This creates a stratified sample of motion blocks which
we can search. In order to perform clustering, 32 frame blocks must
be embedded in a coordinate system. We compute the coordinate
of a 32 frame block by augmenting the feature vectors of the 32
frames into one big vector. We then perform k-means clustering on
these augmented vectors to find 100 clusters of 32 frame blocks.

The result of the search using 32 frame sequences is a rough so-
lution because the search did not see the entire motion database and
we could only cut between sequences along integer multiples of 32
(figure 3-b). The result of this step is refined by doing another DP
on 16 frame sequences. At this step, we would like to find a better
motion that has the general structure of the 32 frame solution. Since
the 32 frame block DP operated on quite different types of blocks,
it can enumerate different motions and capture the general structure
of the desired motion quite well. Thus, the 16 frame block solution
should improve it in terms of continuity and annotation matching

1The D and C functions are inherently local as they measure goodness
of individual frames.
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without changing the structure of the motion. The active sets of 16
frame sequences are chosen to be those that are “near” the previ-
ous solution at the time of the slot (figure 3-c,d). In order to find
what is close to a given block of 16 frames, we use clustering again.
This time we cluster all sequences of 16 frame blocks. The active
set for a block is then all the blocks that are in the same cluster as
the 16 frame block of the parent solution. Since the number of 16
frame blocks that we find will be the active set for the next level of
search, we would like to have about 100 blocks per cluster which is
enforced by clustering into T

100 clusters.
One can go down to the individual frame level by doing succes-

sive DP, using the result of the previous one to choose the active sets
for the next search (figure 3-e). However, in practice, we do only 3
searches and stop at 8 frame sequences. After we go down to the 8
frame level, we create and save the motion. Then we go back and
restart the search from the top using another random selection of 32
frame blocks from each cluster. The search started with a random
selection of relatively different types of blocks tends to explore the
space of motions quite well whereas the lower level searches fine
tune the solution found in the previous level. This way, at each it-
eration, we generate a new motion which should be better than the
previous one.

Frame constraints can easily be incorporated into this search
procedure. Every time slot during the dynamic programming has
an active set of motion blocks where any one of these blocks can
be used at that slot. However, we can force a specific frame in the
database to occur at a particular time by making the active set for
the slot containing that frame consist of only one block: the block
that has the desired frame or motion. Since this reduces the number
of blocks in the active set for the constrained block to one, frame
constraints make the search easier by constraining the search space.

3.4 Position Constraints

During the search, we would like to assert geometric constraints
such as “be here” at the end of the motion [Arikan and Forsyth,
2002]. The search process described above is iterative: it gener-
ates a new motion at each iteration. Even though the motions that
it generates may not satisfy position constraints, combinations of
these motions may. For example, by taking the first 100 frames
of one motion and the last 100 frames of another motion, we may
be able to create motions that go to a particular position and ori-
entation. Enumerating all possible cuts between motions that have
been generated so far is very costly. The motions are generated in 8
frame blocks, so we can enumerate cuts at the 8 frame block granu-
larity (i.e., we enumerate cuts between integer multiples of 8 frame
blocks). Furthermore, instead of enumerating all cuts between all
pairs of motions that have been generated, we only enumerate cuts
between the motion that has been generated at this iteration and the
best 20 motions that have been generated in the previous iterations.
This gives us enough variety in terms of the end position/orientation
while making the search tractable.

For a given pair of motions and a given cut location, such as
after block 4, we can compute the end position/orientation of the
motion that had its first 4 blocks from the first one and the remaining
blocks from the second one in O(1) time. This involves caching,
for every block of every motion, the position and orientation of the
body at the ending frame of the block relative to the beginning of
the motion.

Whenever a new motion is generated at each iteration, it has an
associated score that comes from DP which optimizes for matching
the annotations and the continuity of the motion. If there are posi-
tional constraints on the motion, we add to this score how close the
motion gets to the desired position. For each of the current 20 best
motions, we look for a single cut between the motion generated at
the last iteration and that motion. If the score of the best motion

End
End

Figure 4: Left- Two motions in the pool of synthesized motions
for positional constraints, neither going to where we want it to go.
Right- The final motion that is created by putting the end of one mo-
tion after the beginning of the other motion achieves the positional
constraints.

obtained like this is better than the score of the best motion we had
so far, we replace the current solution with that one and put the new
motion back into the pool of best 20 motions synthesized.

The motions that are generated at each iteration are quite good in
terms of their continuity and they are often quite different motions.
Making any cut to any other motion creates a visible discontinuity.
Thus we keep a pool of the best 20 motions for each level of the
search: for 32, 16 and 8 frame blocks separately. Whenever, a level
generates a solution, it is inserted into the level’s pool as described
above. A solution can remain untouched if it already gets close to
the target state. However, if it does not get to the target state, it is
likely to be replaced by another that will get closer to the target.
Making these position constraint enforcements after every level co-
erces motions towards the target state. Since the lower levels refine
the continuity of the motion, the result is better.

If there is no position constraint on the motion, we do not keep a
pool of motions at every search level. Instead, a motion generated
in a level is used to find the active sets of motion blocks for the next
level and is then discarded. Whenever we generate a new solution
at the 8 frame level that is better than the best one we have, we
create the motion (see section 4) and start displaying it to the user.

If it is not possible to meet the position constraints while being
continuous and satisfying annotations, the search algorithm will be
biased towards one of these terms as a function of their weights
in the final score computation. By displaying the current best mo-
tion to the user, he/she can see if this is happening and change the
constraints interactively (see figure 2).

4 Creating the Motion

The final motion is constructed out of 8 frame sequences each of
which may come from a different motion. Thus, it may be discon-
tinuous at the block boundaries. Each block has a motion num-
ber which identifies the motion that the block comes from, an en-
try frame number and an exit frame number (which is entry+8 at
the beginning). The discontinuity problem is alleviated by passing
the motion through a local minimization step that tweaks the en-
try/exit frames of these blocks to attain the maximum continuity.
This can be done by looking at pairs of subsequent blocks. At the
boundary point, we switch from frame fi of motion m1 to frame
f j of motion m2. The objective at this step is to decrease the dis-
tance E = (F( fi+1)−F( f j))2 where F( f ) is the feature vector for
frame f . The feature space provides a comparison medium for two
frames: if features for two frames are close in the feature space,
they are similar. We minimize the function E with respect to fi and
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f j using gradient descent (see figure 3-f). We do this optimization
for every pair of blocks in the synthesized motion. Even though
this step can change the number of frames used in the motion or
even worse, move the frame we exit a block before the entry frame,
such problems rarely occur. This is because the result of the DP is
usually so good that the gradient descent makes 1-2 frame shifts at
the block boundaries and the length of the motion stays constant.

After this step, we are left with a sequence of motions and point-
ers to the entry and exit frames. We take the corresponding frames
from each motion and put them together to form a single motion
sequence. We also perform a smoothing as in [Arikan and Forsyth,
2002] to get rid of offensive small discontinuities.

5 Discussion

Combinatorial explosion makes dynamic programming on the in-
dividual frame level entirely intractable. However, we believe the
approximation provided by starting at 32 frame blocks and refining
the solution is reasonable. Starting the dynamic programming at
16 or 8 frame blocks does not improve the solution substantially in
practice, but makes the search process significantly slower. Using
a longer initial block creates bigger quantization error for matching
the annotations and leads to slower convergence.

The search time is O(k× (n2 + m2)) where k is the number of
blocks to search (proportional to the desired motion length), n is
the number of top level clusters and m is the number of motions
per cluster (m×n ∼= T ). The term n2 above comes from the initial
top level search, and the m2 term comes from the refinement steps.
Thus for n ≈ m, the search time is linear in the number of frames to
synthesize and the number of frames in the database.

The major limitation of the algorithm is its inability to synthe-
size frames that do not occur in the database. For example, if the
database does not contain an instance of running and jumping,
the algorithm will not be able to synthesize a running jump.
This means the annotation vocabulary must match the database. If
chosen annotation labels do not happen in the database, the algo-
rithm will not be able to synthesize matching motions. In such
a case, the algorithm may synthesize discontinuous motions if the
weight of the motion continuity is small compared to the annotation
matching weight (controlled by α). The motion smoothing mecha-
nism can then move the entry and exit frames of the joining blocks
substantially to make them join up better. This in turn can change
the length of the synthesized motion substantially. However, with a
suitable selection of the vocabulary and example motions for each
annotation in the dataset, this problem does not happen.

Since we do not have an explicitly computed motion graph where
possible connections between motions are enumerated, the search
algorithm can put any sequence of frames from one motion after
any sequence of frames from another motion. If the end of one se-
quence does not look like the beginning of the subsequent sequence,
the continuity score will be bad, forcing the search to find another
arrangement of frames. However, if the user asks for a walking
and then running motion and if the motion dataset does not con-
tain any transition motions from walking to running, the search will
fail to find such an alternative arrangement that is continuous. This
means that if the user asks for motions that do not happen naturally
or do not occur in the database, the search will either omit the an-
notations and will stay continuous or will satisfy the annotations by
a discontinuous motion. The search can be guided to doing either
one by changing the influence (α) of the continuity score and the
annotation score.

The interactive search makes it possible to get a sense of what
kinds of motions can be synthesized from the database. The user
can see different kinds of motions that are being obtained after each
iteration for a given set of annotations. If the annotations are incom-
patible and the search is unable to find a desirable motion, the user

Figure 5: The framework can synthesize motions that match a given
set of annotations marked on the timeline. For example, the top
figure shows a synthesized motion for walking but not waving. The
middle picture is synthesized for walking but waving only for the
second half of the motion. The bottom motion is synthesized for
walking and waving.

gets direct feedback and can paint the timeline differently to help
the search by clarifying the desired annotations.

6 Results

We presented an interactive motion synthesis algorithm where we
can control qualitative properties of the synthesized motion as well
as details. The synthesis process is easy to interact with and gen-
erates desired motions quickly. The user can specify what kinds of
motions are to be performed at what times and what kind of motions
are not to be performed (see figure 5). While the main contribution
of the paper is synthesizing motions that match given annotations,
the user can also enforce low level constraints. The user can force
the synthesized figure to have a particular pose or motion (in the
database) at a particular frame (see figures 6 and 1). The algorithm
can also synthesize motions that go to a specific position and ori-
entation (see figure 7). As the accompanying video demonstrates,
motions synthesized with our system meet the annotations and look
human. This means that our continuity score is effective and the
search is successful.

The user interface for synthesizing motion is quite easy to use
and the synthesis process is interactive. The user can get immedi-
ate feedback on the search process and change constraints on the
fly. The iterative nature of the search also means as the user waits
longer, better motions are generated.
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Figure 6: In addition to matching the annotations, a specific frame or motion can be forced to be used at a specific time. Here, the person is
forced to pass through a pushing frame in the middle of the motion while running before and after the pushing.

Figure 7: The search can also take positional constraints into ac-
count while synthesizing motions for given annotations. Here, the
figure is constrained to be running forward and then running back-
wards. We enforce position constraints indicated as green arrows.
For clarity, the running forwards section of the motion is shown on
top while running backwards is shown on the bottom.
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