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Background 
A kinematic surface is tangent everywhere to some 

easily parameterizeable, linear velocity field over space 

Example:  A cylinder is tangent everywhere to: 
A. Translation field:  B. Rotation field: 

Kinematic surface fitting entails: 
(A) Find a kinematic 
motion field  
(red streamlines) 

(B) Project data to  
common plane; fit 
ΨƎŜƴŜǊŀǘƻǊ ŎǳǊǾŜΩ 

(C) Advect generator 
curve along motion field; 
create kinematic surface 

[H. Pottmann, J. Wallner, Computational Line Geometry, 
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.] 

Kinematic surface field types: 

( )v p c ( )v p r p c ( )v p r p c p

Constant field Helical field Spiral field 

Common kinematic motion fitting method: 
 

Parameterize v(p) by vector m. 
 
Solve: 
 
subject to some quadratic constraint, q(m)=1   
Solve as small generalized eigenvalue problem. 

2argmin ( ( ) )i i
im

v p n

Results depend on quadratic constraint. 
 Biased by scale of v(p). With noise, biases cause erroneous fits. 

Rotation constraint:                       (Rotation axis has magnitude 1.) 
2 1r

Works for surfaces of revolution. Biased against helices and spirals: 

Rotation Constraint Taubin Constraint 

Unit constraint:                        (Complete param. vec. has magnitude 1.) 
2 1m

Works for many cases. Biases depend on scale: 

!ǘ ǎƳŀƭƭŜǊ ǎŎŀƭŜǎ όōƻǳƴŘƛƴƎ ōƻȄ ǎƛȊŜ Җ пύΣ ōƛŀǎŜŘ ŀƎŀƛƴǎǘ ǘǊŀƴǎƭŀǘƛƻƴΥ 

!ǘ ƭŀǊƎŜǊ ǎŎŀƭŜǎ όōƻǳƴŘƛƴƎ ōƻȄ ǎƛȊŜ җ пύΣ ōƛŀǎŜŘ ǘƻ ƻŦŦǎŜǘ Ǌƻǘŀǘƛƻƴ ŀȄƛǎΥ 

Unit Constraint Taubin Constraint 

Unit Constraint Taubin Constraint 

(cause: rotation/scaling has smaller vel. at pts near axis, so smaller error) 

(cause: rotation axis magnitude is smaller to permit offset) 

[Pottmann and Randrup, 98] 

[Gelfand and Guibas, 04; Hofer et al. 05] 

Rescaling not the answer: No fixed scale for unit constraint works for all examples! 

1. An Improved Quadratic Constraint 

2. An Iterative Method: 

We adapt methods previously used for algebraic 
surface fitting and other computer vision problems: 

Taubin Constraint: 
2

w.r.t. data params (error) 1
i

For KSF problem: 

Basis independent & less bias: Constraining avg. velocity 
prevents systematically lowering velocity for data points overall. 

More examples fit with Taubin constraint 

�^�/�u�‰�Œ�}�À�����_�����������µ�•���W 

[Taubin, 91] 

(error in normal only) 

HEIV Method: Iteratively solve w/ ¢ŀǳōƛƴΩǎ method 

Reweight error for each data point to compensate 
ŦƻǊ ŜȄŎŜǎǎ ǿŜƛƎƘǘΣ ōŀǎŜŘ ƻƴ ƭŀǎǘ ƛǘŜǊŀǘƛƻƴΩǎ ǎƻƭǳǘƛƻƴΦ 

New velocity fields can be fit: 

[Leedan ���v�����D�����Œ�U���Z�ì�ì�• 

Detail: Use error in position, not just normal, 
to avoid degeneracy where v(p)=0 

Normal error only Normal+position error 

Constraint becomes:  

A small weight for ǇƻǎΩƴ error; we use:  

HEIV fits better than Taubin if data is better where v(p) is smaller: 

HEIV, 3 iters Taubin 

Applications 

For example, an elliptical surface of revolution  
would be permitted by scaling a helical field: 

A general, linear form of this is: 

The Taubin constraint works on this new field: 

Elliptical revolutions fit using Taubin constraint 

These improvements can robust-ify previous 
kinematic surface fitting applications. 
 
Such applications include: 

Interactive fitting for re-design: 

�^�Á�����‰���(�]�š�š�]�v�P���~�À�]�����Z���Z���]�v�����[���(�]���o���•�•�W 

Surface segmentation: 

[Gelfand and Guibas, 04] 

e.g. [Pottmann, Chen, and Lee, 98] 

e.g. [Andrews, Jin, Sequin, 12] 


