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Background

A kinematic surfacastangenteverywhereto some
easilyparameterizeablelinear velocityfield overspace

Example: A cylinder is tangent everywhere to:
B. Rotation field:

A. Translation field:
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Kinematic surface fittingentaills:

(A) Find a kinematic

motion field (B) Project data to (C)Advectgenerator
(redstreamline$3  common plane; fit curve along motion field;
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Kinematicsurface field types
Constantfield  Helicalfield
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Previous Methods

Common kinematic motion fittingnethod:
Parameterize/(p) by vectorm.
Solve argmin > (V(p,) -n.)*

e argmin Y (p) -

subject to some quadratic constraintng)=1
Solve as small generalized eigenvalue problem.

Resultsdepend on quadratic constraint.
Biased by scale ofp). With noisepiasescause erroneous fits.

. . 2 : : :
Rotation constraintf| I ||"= 1 (Rotation axis has magnitude 1.)
[Pottmannand Randrup 98]

Works for surfaces of revolution. Biased against helices and spirals:

Rotation Constraint TaubinConstraint

Unit constraint:|| m ||2: 1 (Completeparam vec has magnitude 1.)
[Gelfandand Guibas 04; Hofer et al. 05]

Works for many cases. Biases depend on scale:
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Unit Constraint TaubinConstraint
(cause: rotation/scaling has smaller velptd near axis, so smaller error)

602dzy RAy3 o 2|E

TaubinConstraint

Unit Constraint

(cause: rotation axis magnitude is smaller to permit offset)

Rescaling not the answer: No fixed scale for unit constraint works for all examplgs!

Improved Methods

We adapt methods previously used for algebraic
surface fitting and other computer vision problems:

1. An Improved Quadratic Constraint

TaubinConstraint: -rams

For KSF problem

(error) =1
[Taubin 91]

(error in normal only
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Basis independent & less bias: Constraining avg. velocity
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More examples fit witifaubinconstraint

2. An Iterative Method.:
HEIWethod: Iteratively solvev/ ¢ | dzomethdela

Reweight error for each data point to compensate
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Detail: Use error in position, not just normal,
to avoid degeneracy whergp)=0

<€
noux

S X 6AFaSR 3l Ayal

Normal+positiorerror

Normal error only

Constraint becomes:

—> A small weight fot. J2 aefdoy; we use:
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Generalization

New velocity fields can be fit:

For example, an elliptical surface of revolution
would be permitted by scaling a helical field:

A general, linear form of this is:

TheTaubinconstraint works on this new field:
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Elliptical revolutions fit usingaubincon

Applications

These improvements can robu$y previous
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Such applications include:

Surface segmentation:
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[Gelfandand Guibas 04]
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e.g.[Pottmann, Chen, and Lee, 98]
Interactive fitting for re-design:

e.g.[Andrews, Jin, Sequin, 12]




