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Abstract

Kinematic surfaces form a general class of surfaces, including surfaces of revolution, helices, spirals, and more. Standard
methods for fitting such surfaces are either specialized to a small subset of these surface types (either focusing exclusively
on cylinders or exclusively on surfaces of revolution) or otherwise are basis-dependent (leading to scale-dependent results).
Previous work has suggested re-scaling data to a fixed size bounding box to avoid the basis-dependence issues. We show
that this method fails on some simple, common cases such as a box or a cone with small noise. We propose instead
adapting a well-studied approximate maximum-likelihood method to the kinematic surface fitting problem, which solves
the basis-dependence issue. Because this technique is not designed for a specific type of kinematic surface, it also opens
the door to the possibility of new variants of kinematic surfaces, such as affinely-scaled surfaces of revolution.

Keywords: kinematic surface fitting, reverse engineering, slippable surfaces, velocity fields, approximate maximum
likelihood, Taubin’s method
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Figure 1: A simple example of kinematic surface fitting: (A) A slip-
pable motion (illustrated by red streamlines) is found for some se-
lection of the data (in blue). (B) The data (in green) is projected to
some shared sweep plane, where it can be fit by a generator curve.
(C) Advecting the generator curve along the slippable motion field
generates the kinematic surface.

1. Introduction

A fundamental sub-problem of reverse engineering is
to fit a primitive surface to a set of points [1]. Kine-
matic surfaces are a class of primitive surfaces notable for
their general applicability. They can be used to classify a
wide range of common surfaces: spheres, planes, cylinders,
cones, surfaces of revolution, logarithmic spirals, helices,
and more [2]. By chaining simple kinematic surfaces, even
more interesting surfaces can be fit, including profile and
developable surfaces [3]. A number of recent systems use
these methods for reverse engineering tasks [4, 5, 6, 7].

A kinematic surface is a surface that is tangent every-
where to some easily parameterizeable, linear velocity field
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Figure 2: Visualization of two kinematic motions of a cylinder. The
arrows show the direction of the fields at individual points, and the
red lines are streamlines showing paths traced by following the ve-
locity fields.

over space (such as those in Sec. 2.1). Given such a field
and a curve in space (which we refer to as the “genera-
tor curve”), advecting the generator curve by the veloc-
ity field will generate a kinematic surface (Fig. 1). Such
tangent-everywhere velocity fields are called the “slippable
motions” of a surface [8]. Slippability of a point p with
normal n, with respect to a field v(p), can be tested by
checking that the normal is orthogonal to the velocity field:
v(p) · n = 0. The full basis of slippable motions of a sur-
face can be used to classify the surface type: for example,
if a surface is slippable by both a pure rotation and a
pure translation in the direction of the rotation axis (as in
Fig. 2), then the surface is a cylinder.

The kinematic surface fitting problem consists of several
sub-problems: segmentation of a surface into subsets that
can be fit by separate kinematic surfaces [8, 2]; fitting a
kinematic motion to a given set of data points; and finally,
finding a generator curve [9]. We focus specifically on the
problem of fitting the kinematic motion. We show that
previous methods for fitting general kinematic motion can
fail on some simple, common cases such as a box or a cone
with small noise. We then show how to fix these problems.
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2. Background

Previous work on fitting the velocity fields of kinematic
surfaces has used a common fitting method (Sec. 2.2) and
problem formulation: Given a set of n points with their
surface normals {pi,ni}, and a velocity field (Sec. 2.1) pa-
rameterized by some vector m, find field parameters that
are “most slippable” with respect to the data points.

2.1. Velocity Field Types

Three velocity fields have been proposed. In order of in-
creasing generality, they are: First, a constant field, which
accepts only translational motion [9]:

v(p) = c (1)

Second, a helical field, which adds optional rotational mo-
tion for helices and surfaces of revolution [10]:

v(p) = r× p + c (2)

Finally, a spiral field which adds optional scaling motion
for cones and logarithmic spirals [11]:

v(p) = r× p + c+γp (3)

2.2. Common Fitting Method

Almost all kinematic surface fitting papers use a com-
mon direct fitting algorithm [10] to find the field parame-
ters.

First, the slippability of the field with respect to the data
is expressed in terms of some symmetric ‘covariance’ ma-
trix M, such that (v(p) · n)2 = mTMm, where m is the
vector of velocity field parameters. For example, for the
spiral field with parameters m = 〈rx, ry, rz, cx, cy, cz, γ〉,
matrix M will be:

M :=
∑
i

f(xi)f(xi)
T (4)

where x := 〈px, py, pz, nx, ny, nz〉

and f(x) := 〈(p× n)x, (p× n)y, (p× n)z, nx, ny, nz, p·n〉

Second, a normalization is introduced to avoid degener-
ate solutions such as the field with v(p) = 0 everywhere.
The most straightforward solution would be to normalize
by ||v(p)||:

v(pi) · ni

||v(pi)||
(5)

However, this normalization has been largely avoided
because it would make the field a non-linear function of its
parameters, leading to a non-linear optimization problem
[10]. Instead, previous work has normalized the cumula-
tive squared error by some quadratic function q (Sec. 2.3)
of the motion parameters m:

argmin
m

1
n

∑n
i=1 (v(pi) · ni)

2

q(m)
(6)

Note that this normalization can alternatively be viewed
as a constraint on the solution vector: minimizing Eqn. 6 is
equivalent to minimizing the non-normalized metric under
the constraint q(m) = 1.

Finally, this quadratic function q is expressed in terms
of some (often singular) symmetric matrix N: q(m) =
mTNm. Using the method of Lagrange multipliers to
solve the constrained minimization problem, m must be
a solution to the generalized eigenvalue problem:

(M− λN)m = 0 (7)

All eigenvectors corresponding to small eigenvalues of the
matrix pencil (M−λN) are then slippable motions of the
data points.

Some systems augment this core fitting method by it-
erative re-weighting (for example to downweight outliers)
[10, 2] or subsequent application of a general, non-linear
fitting technique (which requires a reasonable “initial esti-
mate” from the core fitting method to perform well) [4].

2.3. Quadratic Normalization Functions

A few different quadratic normalizations have been pro-
posed. The two commonly used normalizations are: First,
the unit constraint, in which the full parameter vector is
constrained to unit magnitude [8, 2]. For the spiral field,
this becomes:

(||r||2 + ||c||2 + γ2) = 1 (8)

Second, the rotation constraint, which just constrains the
rotation axis r [10]:

||r||2 = 1 (9)

The constant field is simple enough that the constraint
||c||2 = 1 solves the problem perfectly; however this is
only applicable to the constant field.

The choice of normalization fundamentally affects the
resulting fit: The rotation constraint requires the solution
to include a rotation component of constant magnitude, so
it should only be used when it is known in advance that
rotation is included in the desired solution [10].

The unit constraint is “basis-dependent:” the best fit
will change if the data is scaled or translated. Previous
work using the unit constraint suggested re-scaling the
data to a fixed size to address this issue [8, 2]. This mit-
igates but does not eliminate the problem: We show in
Sec. 3 that there is no fixed scale that can eliminate the
artifacts of basis dependence.

3. Failure Cases of Current Methods

The kinematic surface fitting methods described in
Sec. 2 work on many examples, shown in previous work
[10, 8, 2, 7]. However, we found that they also fail on
some common, simple cases. In this section, we demon-
strate and explain the cases that cause these methods to
fail.
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Figure 3: A spiral field (Eqn 3) (red streamlines) is fit to a blue se-
lection of a helix with randomly perturbed vertices (Gaussian noise
with σ = 0.4% of bounding box size) using (A) the rotation con-
straint and (B) Taubin’s constraint.

Unit constraint, size=4 Taubin constraint
A B

Figure 4: A spiral field (Eqn 3) (red streamlines) is fit to a blue
selection of a box with randomly perturbed vertices (Gaussian noise
with σ = 0.2% of bounding box size) using (A) the unit constraint
with bounding box size 4 and (B) Taubin’s constraint.

In each failure case, the key problem is that the slippa-
bility measured for each data point is scaled by ||v(p)|| –
a quantity that is unrelated to the actual tangency of the
field to the surface at that point. While the quadratic
normalizations of Sec. 2.3 avoid the degenerate case of
v(p) = 0 everywhere, they still permit “low velocity”
fields for which ||v(p)|| is reduced at every data point.
The “most slippable” solutions under these constraints are
therefore biased towards such “low velocity” fields. For
noisy data, where the expected slippable motions have
some error, these bias-favored solutions can be erroneously
chosen as the most slippable fields.

We demonstrate the failure cases in practice on simple
synthetic example meshes, for which the ideal solutions are
readily apparent. Each example mesh is generated with
approximately uniform vertex sampling. We introduce a
small amount of Gaussian noise (with σ less than 0.5% of
the bounding box size and smaller than half the average
edge length), and we recompute the normal for each sam-
ple point by averaging face normals. These small-noise
examples should not be challenging, but they cause the
previous methods to perform poorly due to their system-
atic biases.

3.1. Rotation Constraint Failure Cases

The rotation constraint, ||r|| = 1, requires a fixed mag-
nitude rotation be part of the solution field, but does not
specify the constraints on the translational or scaling mo-
tion of the field. Any translational or scaling motion in
the field will therefore increase the magnitude of ||v(p)||
everywhere, beyond what is mandated by the rotation con-
straint. This additional velocity scales the error at each

Unit constraint, size=4 Taubin constraint
A B

Figure 5: A spiral field (Eqn 3) (red streamlines) is fit to a cone
with randomly perturbed vertices (Gaussian noise with σ = 0.4% of
bounding box size) using (A) the unit constraint with bounding box
size 4 and (B) the Taubin constraint.

data point, causing the rotation constraint to be system-
atically biased against translational or scaling motion in
the face of noise.

To demonstrate this, we fit a helix with small noise us-
ing the rotation constraint in Fig. 3. The rotation con-
straint underestimates the pitch (translational motion) of
the helix. In contrast, a fitting method without this bias
(introduced in Sec. 4.1) recovers the expected pitch.

3.2. Unit Constraint Failure Cases

The unit constraint is basis-dependent: fitting results
depend on the scale and translation of the data points.
Therefore, those who use it first center the data points
around the origin, and scale the bounding box to a fixed
size (e.g. so the longest edge of the box has unit length)
[8, 2]. The biases of the unit constraint depend on the
chosen size.

One source of bias in the unit constraint favors scaling
and rotation at small scales: Velocities of linear scaling
and rotational motions are proportional to the distance
from the center or axis of the motion, so as data points
come closer together, the velocities (and thus errors) from
scaling and rotation become smaller. To demonstrate this
bias, we fit four sides of a box with small noise using the
unit constraint in Fig. 4. At scales with bounding box size
4 or smaller, the resulting fit has a significant, erroneous
rotational component.

Another source of bias favors offsetting the rotation axis
from the origin. As the constant parameter c increases to
achieve the offset, the rotation axis ||r|| must scale down
proportionally (to satisfy the unit constraint). Scaling
down the rotation axis scales down the velocity (and thus
error) of rotation. To demonstrate this bias, we fit a cone
with small noise using the unit constraint in Fig. 5. At
scales with bounding box size 4 or greater, the resulting
fit erroneously offsets the rotation axis.

From these two examples, we see that the bias of the
unit constraint can cause problems at small scales (sizes
≤ 4) and large scales (sizes ≥ 4) alike: no single scale
works well for all cases.
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4. Improved Fitting Methods

The problems we have identified in kinematic surface fit-
ting methods are similar to those faced by early methods
for algebraic surface fitting [12]. “Approximate maximum
likelihood” (AML) methods are a general class of meth-
ods for fitting algebraic surfaces and general parametric
models, which have been applied to many other problems
[13, 14, 15]. In this section, we show how to apply AML
methods to the kinematic surface fitting problem to create
an improved kinematic surface fitting method.

AML methods can apply to any parametric model
that takes the form m · f(x) = 0. For our kinematic
equations (Sec. 2.1) this holds – in the case of a spi-
ral field, for example, m would be the parameter vector
〈rx, ry, rz, cx, cy, cz, γ〉, and f(x) would be the transforma-
tion defined in Eqn. 4.

The “maximum likelihood” (ML) method seeks to min-
imize the squared distance from each data point xi to the
nearest corresponding point on the model surface x̄i; in
other words, to minimize:∑

i

||xi − x̄i||2, subject to m · f(x̄i) = 0

Because x̄i is the zero of m · f(x) that is closest to xi,
the distance to this root can be approximated to first order
by the magnitude of one step of Newton’s method. This
gives the AML distance:∑

i

(m · f(xi))
2

||∇x(m · f(xi))||2
(10)

Rewritten in terms of kinematic surface fitting, the AML
method then becomes:∑

i

(v(pi) · ni)
2

||∇p(v(pi) · ni)||2 + ||v(pi)||2
(11)

Note that the AML and ML methods are both scale
dependent, because the closest element x̄i can be differ-
ent from xi in both position and normal. If the points are
scaled up, differences in the normal are unchanged, but dif-
ferences in the position increase. We can make this trade-
off explicit: scale the data points to a fixed size bounding
box (we scale it so the longest axis has length 1), then
introduce a weight parameter wp that scales the contribu-
tion of the position-based term:∑

i

(v(pi) · ni)
2

wp||∇p(v(pi) · ni)||2 + ||v(pi)||2
(12)

Note that as wp goes to zero, the AML fitting equation
becomes the non-linear minimization (Eqn 5) previously
proposed for kinematic surface fitting [10]. Therefore, in
theory, all results on AML fitting apply directly to this
fitting problem. However, this original non-linear mini-
mization has numerical issues around singularities where
||v(p)|| goes to zero: at these points, that slippability met-
ric is undefined. A small, non-zero value for wp gives a
more stable metric with no undefined points.

4.1. Direct AML Method: Taubin’s Constraint

The AML distance metric is non-linear, requiring iter-
ative methods or approximation to find a solution. One
popular approximation is Taubin’s method [13], which ap-
proximates the non-linear AML metric (Eqn. 10) by sum-
ming all numerator and denominator elements separately:∑

i(m · f(xi))
2∑

i ||∇x(m · f(xi))||2

Like the previous kinematic surface fitting methods
(Sec. 2), this is a direct method solveable by a small gener-
alized eigenvalue problem. Like those methods, it rescales
the cumulative squared error (as in Eqn. 6), so individ-
ual points are still scaled by local velocity. However, when
wp := 0, this constraint ensures that the overall average
squared velocities have a fixed magnitude – Taubin’s con-
straint becomes:

1

n

n∑
i=1

||v(pi)||
2 = 1 (13)

Because the average squared magnitude velocity is di-
rectly constrained, we can’t ‘cheat’ the Taubin-constrained
error metric by choosing a field that globally reduces the
velocity at all data points. This prevents failure cases of
the variety described in Sec. 3.

Note that letting wp := 0 ensures that Taubin’s method
is basis independent, and does not cause stability issues:
degenerate points where v(pi) goes to zero simply do not
contribute to either the numerator or denominator sums.

To implement Taubin’s method, we express the nor-
malization in the form mTNm required by the stan-
dard fitting algorithm (Sec. 2.2). The matrix N =
(∇xf(xi))(∇xf(xi))

T ; for the spiral field (Eqn 3) this is:

N =

n∑
i=1

 [pi]
T
×[pi]× −[pi]× 0
−[pi]

T
× I pi

0 pi
T pi · pi

 (14)

+wp

n∑
i=1

 [ni]
T
×[ni]× 0 0
0 0 0
0 0 ni · ni


with m = 〈rx, ry, rz, cx, cy, cz, γ〉

For generality, we have included the wp terms here;
when applying the Taubin constraint this weight should
be zero, but in a non-linear, iterative method (Sec. 4.2) it
can be non-zero.

To demonstrate the Taubin constraint in practice, we
show a number of practical test cases of the Taubin con-
straint in Figs. 3-6 and 8-10.

While the Taubin constraint works well in practice, it
remains a biased approximation – it systematically places
less weight than ideal on points where the velocity field is
small, and more where the velocity field is large. To ad-
dress this, we turn to iterative, non-linear AML methods.
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Figure 6: A spiral velocity field fit to a number of different selections
(in blue) using Taubin’s constraint. Streamlines tracing the best
fitting field are shown for each image.

4.2. Iterative AML Methods: HEIV and Reduced

To minimize the true non-linear error term (either
Eqn. 5 or Eqn. 12), we must use an iterative method. For-
tunately, a number of iterative AML methods have been
developed [15, 16, 17] – all of which have been shown to
converge very quickly in theory for data with small noise
[15]. All of these methods are based on solving a sim-
ilar eigenvalue problem to the direct methods (Sec. 2.2)
but iteratively adjusted to correct the weights of the data
points. Because the weights can only be corrected with re-
spect to one field, these iterative methods focus on finding
a single best solution rather than the full basis of solutions
provided by direct methods.

Previously the “reduced method” [16] has been sug-
gested for use on the kinematic surface fitting problem [18],
although without evaluation. This method simply itera-
tively re-weights the unit-constraint method. Specifically,
it repeatedly solves the eigenvalue problem described in
Sec. 2.2, with normalization matrix N = I and error ma-
trix M re-computed at the (j + 1)th iteration as:

Mj+1 :=
∑
i

f(xi)f(xi)
T

||∇x(mj · f(xi))||2
(15)

Where mj is the parameter vector at iteration j; m0 can
be initialized by solving with any direct method. Unfortu-
nately, this fails in the same way as the non-iterative unit
constraint method: the inherent biases of that method are
not addressed by re-weighting, and similar results to those
of Figs. 4 and 5 occur. This result is consistent with the
poor performance observed for the reduced method on al-
gebraic curve fitting problems under mild noise [15].

In contrast, the “heteroscedastic errors-in-variables”
(HEIV) method [17] performed much more successfully

wp := 10−5 wp := 10−3

A B

Figure 7: A spiral field (Eqn 3) is fit to a cone using the HEIV method
with varying values for wp. The HEIV method never converges for
wp := 10−5; we show the state after 101 iterations. The method
converges in 2 iterations for wp := 10−3.

HEIV,wp := 10−3 Taubin
A B

Figure 8: A spiral field (Eqn 3) is fit to a cone with Gaussian noise
applied to the base (σ = 1% bounding box size) using the HEIV
method (converged in 3 iterations) and the Taubin method.

when evaluated in the context of algebraic curve fitting
[15] – replicating the robustness under noise of the Taubin
method, but with lower error. Intuitively this may be ex-
pected because this method can be seen as an iterative re-
weighting of Taubin’s method. At each iteration, it solves
a generalized eigenvalue problem with M reweighted as in
Eqn. 15 above, and N reweighted as:

Nj+1 :=
∑
i

(
(mj · f(xi))

2

||∇x(mj · f(xi))||4

)
(∇xf(xi))(∇xf(xi))

T

This method performs similarly to the Taubin method
on most examples we tested. Some care must be taken
to choose the wp large enough for stability; we found
wp ≥ .001 worked consistently, while smaller values could
be unstable and thus fail to converge as shown in Fig. 7.
We therefore set wp := .001 for our tests. Advantages
of HEIV over Taubin become evident when noise is dis-
tributed unevenly over the surface, in areas which Taubin
will systematically over-weight, as shown in Fig. 8.
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Figure 9: A spiral field (Eqn 3) is fit to a scanned model of a drill bit,
on which outliers are concentrated at one end. In (B)-(D), the best-
fitting vector field is visualized by red stream lines. (B) and (C) are
fit without using RANSAC; in (B) the outliers at the end have been
omitted manually by not selecting that portion of the mesh, while in
(C) the outliers are included, significantly affecting the result. (D) is
fit using RANSAC, and it gives a result similar to manually avoiding
the outliers. The Taubin method is used for each fit.

5. Robustness to Outliers

Like any least-squares fitting method, these methods are
all sensitive to outliers. Many methods can be, and have
been, used to reduce the impact of such outlier points;
in particular, M-estimators [19] and RANSAC [20] have
both been suggested [10, 2]. The RANSAC approach is
explained in detail, in the context of kinematic surface fit-
ting, by [2]. We recommend this procedure, albeit using
the new fitting techniques and normalized distances pre-
sented here instead of Eqn. 8. An example demonstrating
the effectiveness of this approach is shown in Fig. 9. For
this example we assumed that outliers have an error (com-
puted by Eqn. 5) greater than .1, and that 90% of points
are not outliers.

6. New Velocity Fields

Previous methods for kinematic surface fitting did not
generalize well beyond the few field types listed in Sec. 2.1:
the unit constraint’s problems only become worse with
more complex fields, and it is unclear how to apply the
rotation constraint unless the field prominently features a
rotation axis parameter. The Taubin and HEIV methods,
in contrast, apply to any velocity field linear in its param-
eters m – that is, any velocity field that can be expressed
in the form v(p) :=

∑
imifi(p) where mi are the ele-

ments of the parameter vector m, and the functions fi(p)
can be any functions from positions to vectors. Therefore
these methods can be used to fit new, more general ve-
locity fields. For sensible results, the class of fields chosen
should also be closed under the Lie bracket operator – in
other words, composing motions of multiple velocity fields
in a class should result in motions which are also in that
class.

A B

C D

Figure 10: The general linear field (illustrated with red streamlines)
is fit to a number of selections (in blue) on various objects.

The space of possible classes of velocity fields is enor-
mous, and not easy to understand intuitively. But it opens
doors to fitting some new, interesting primitives – and
some simple primitives that were notably missing from
the past repertoire of kinematic surfaces. For example:
although spheres are handled by the more traditional kine-
matic surfaces, ellipsoids and general quadrics are not, be-
cause there is no support for rotation combined with some
scaling. This would correspond to a non-linear field with
some scaling matrix S as a new parameter:

v(p) := S−1(r× (Sp)) + c (16)

Just by adding this scale factor, kinematic surfaces would
now include all quadric surfaces as a subtype they could
handle. This scaled equation is no longer linear in the
parameters, but if we multiply out (letting A = S−1[r]×S,
where [r]× is the matrix form of a cross product by r) we
see that its fields are a subset of a class of general linear
fields:

v(p) := Ap + c (17)

where A is an arbitrary 3× 3 matrix. This general linear
field can be used to fit fields with rotation combined with
some scaling, as we demonstrate in Fig. 10.

From this example it is clear that the more general fields
do include at least one additional, useful shape primitive,
and thus seem worthy of further investigation.

7. Discussion and Future Work

We identified a weakness in the standard algorithm for
fitting kinematic surfaces, giving detailed examples of how
this causes problems in practice as well as an explanation
of the underlying source of these problems. We then pre-
sented a solution that is general, basis-independent, and
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correctly handles the failure cases of the previous meth-
ods. This solution should improve the robustness of algo-
rithms based on kinematic surface fitting. Its generality
also makes it easy for us to introduce a new type of field.

The newly introduced field is a proof of concept that
the generality of our method could apply to even broader
applications. It also presents new challenges: with more
complex velocity fields, a useful interpretation of the re-
sulting parameters becomes more difficult. Developing a
complete surface reconstruction pipeline that exploits the
full range of possible kinematic surfaces will likely require
exploration of additional new field types and new algo-
rithms to fit and interpret those field types.
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